

Music Player Daemon

Contents:

	User’s Manual
	Introduction

	Installation

	Configuration

	Advanced configuration

	Using MPD

	Advanced usage

	Client Hacks

	Troubleshooting

	Plugin reference
	Database plugins

	Storage plugins

	Neighbor plugins

	Input plugins

	Decoder plugins

	Encoder plugins

	Resampler plugins

	Output plugins

	Filter plugins

	Playlist plugins

	Archive plugins

	Developer’s Manual
	Introduction

	Code Style

	git Branches

	Hacking The Source

	Submitting Patches

	Client Developer’s Manual
	Introduction

	Client Libraries

	Connecting to MPD

	Environment Variables

	Protocol
	General protocol syntax

	Recipes

	Command reference

man pages:

	mpd

	mpd.conf

Indices and tables

	Index

	Search Page

User’s Manual

Introduction

Music Player Daemon (MPD) is a flexible, powerful, server-side application for playing music. Through plugins and libraries it can play a variety of sound files while being controlled by its network protocol.

This document is work in progress. Most of it may be incomplete yet. Please help!

Installation

Installing on Debian/Ubuntu

Install the package mpd via apt:

apt install mpd

When installed this way, MPD by default looks for music in /var/lib/mpd/music/; this may not be correct. Look at your /etc/mpd.conf file…

Note

Debian and Ubuntu are infamous for shipping heavily outdated
software. The MPD version in their respective stable
releases are usually too old to be supported by this project.
Ironically, the MPD version in Debian “unstable” is
more stable than the version in Debian “stable”.

Installing on Android

An experimental Android build is available on Google Play. After installing and launching it, MPD will scan the music in your Music directory and you can control it as usual with a MPD client.

If you need to tweak the configuration, you can create a file called
mpd.conf in MPD’s data directory on the external storage
(usually Android/data/org.musicpd/files/mpd.conf).

ALSA is not available on Android; only the OpenSL ES output plugin can be used for local playback.

Compiling from source

Download the source tarball [https://www.musicpd.org/download.html]
and unpack it (or clone the git repository [https://github.com/MusicPlayerDaemon/MPD]):

tar xf mpd-version.tar.xz
cd mpd-version

In any case, you need:

	a C++20 compiler (e.g. GCC 10 or clang 11)

	Meson 0.56.0 [http://mesonbuild.com/] and Ninja [https://ninja-build.org/]

	pkg-config

Each plugin usually needs a codec library, which you also need to
install. Check the Plugin reference for details about required libraries

For example, the following installs a fairly complete list of build dependencies on Debian Bullseye:

apt install meson g++ \
 libfmt-dev \
 libpcre2-dev \
 libmad0-dev libmpg123-dev libid3tag0-dev \
 libflac-dev libvorbis-dev libopus-dev libogg-dev \
 libadplug-dev libaudiofile-dev libsndfile1-dev libfaad-dev \
 libfluidsynth-dev libgme-dev libmikmod-dev libmodplug-dev \
 libmpcdec-dev libwavpack-dev libwildmidi-dev \
 libsidplay2-dev libsidutils-dev libresid-builder-dev \
 libavcodec-dev libavformat-dev \
 libmp3lame-dev libtwolame-dev libshine-dev \
 libsamplerate0-dev libsoxr-dev \
 libbz2-dev libcdio-paranoia-dev libiso9660-dev libmms-dev \
 libzzip-dev \
 libcurl4-gnutls-dev libyajl-dev libexpat-dev \
 libasound2-dev libao-dev libjack-jackd2-dev libopenal-dev \
 libpulse-dev libshout3-dev \
 libsndio-dev \
 libmpdclient-dev \
 libnfs-dev \
 libupnp-dev \
 libavahi-client-dev \
 libsqlite3-dev \
 libsystemd-dev \
 libgtest-dev \
 libicu-dev \
 libchromaprint-dev \
 libgcrypt20-dev

Now configure the source tree:

meson . output/release --buildtype=debugoptimized -Db_ndebug=true

The following command shows a list of compile-time options:

meson configure output/release

NB: Check the sysconfdir setting to determine where mpd will look for mpd.conf; if you expect mpd to look for /etc/mpd.conf the sysconfdir must be ‘/etc’ (i.e., not ‘etc’ which will result in mpd looking for /usr/local/etc/mpd.conf):

meson configure output/release |grep sysconfdir

If this is not /etc (or another path you wish to specify):

$ meson configure output/release -Dsysconfdir='/etc' ; meson configure output/release |grep syscon
 sysconfdir /etc Sysconf data directory

When everything is ready and configured, compile:

ninja -C output/release

And install:

ninja -C output/release install

Compiling for Windows

Even though it does not “feel” like a Windows application, MPD works well under Windows. Its build process follows the “Linux style” and may seem awkward for Windows people (who are not used to compiling their software, anyway).

Basically, there are two ways to compile MPD for Windows:

	Build as described above: with meson and
ninja. To cross-compile from Linux, you need a Meson
cross file [https://mesonbuild.com/Cross-compilation.html].

The remaining difficulty is installing all the external libraries.
And MPD usually needs many, making this method cumbersome
for the casual user.

	Build on Linux for Windows using MPD’s library build script.

This section is about the latter.

You need:

	mingw-w64 [http://mingw-w64.org/doku.php]

	Meson 0.56.0 [http://mesonbuild.com/] and Ninja [https://ninja-build.org/]

	cmake

	pkg-config

	quilt

Just like with the native build, unpack the MPD source
tarball and change into the directory. Then, instead of
meson, type:

mkdir -p output/win64
cd output/win64
../../win32/build.py --64 \
 --buildtype=debugoptimized -Db_ndebug=true \
 -Dwrap_mode=forcefallback

This downloads various library sources, and then configures and builds
MPD (for x64; to build a 32 bit binary, pass
--32). The resulting EXE files is linked statically, i.e. it
contains all the libraries already and you do not need carry DLLs
around. It is large, but easy to use. If you wish to have a small
mpd.exe with DLLs, you need to compile manually, without the
build.py script.

The option -Dwrap_mode=forcefallback tells Meson to download and
cross-compile several libraries used by MPD instead of looking for
them on your computer.

Compiling for Android

MPD can be compiled as an Android app. It can be installed easily with Google Play, but if you want to build it from source, follow this section.

You need:

	Android SDK

	Android NDK r25b [https://developer.android.com/ndk/downloads]

	Meson 0.56.0 [http://mesonbuild.com/] and Ninja [https://ninja-build.org/]

	cmake

	pkg-config

	quilt

Just like with the native build, unpack the MPD source
tarball and change into the directory. Then, instead of
meson, type:

mkdir -p output/android
cd output/android
../../android/build.py SDK_PATH NDK_PATH ABI \
 --buildtype=debugoptimized -Db_ndebug=true \
 -Dwrap_mode=forcefallback \
 -Dandroid_debug_keystore=$HOME/.android/debug.keystore
ninja android/apk/mpd-debug.apk

SDK_PATH is the absolute path where you installed the
Android SDK; NDK_PATH is the Android NDK installation path;
ABI is the Android ABI to be built, e.g. “arm64-v8a”.

This downloads various library sources, and then configures and builds MPD.

Configuration

The Configuration File

MPD reads its configuration from a text file. Usually, that is /etc/mpd.conf, unless a different path is specified on the command line. If you run MPD as a user daemon (and not as a system daemon), the configuration is read from $XDG_CONFIG_HOME/mpd/mpd.conf (usually ~/.config/mpd/mpd.conf). On Android, mpd.conf will be loaded from the top-level directory of the data partition.

Each line in the configuration file contains a setting name and its value, e.g.:

connection_timeout "5"

For settings which specify a filesystem path, the tilde is expanded:

music_directory "~/Music"

Some of the settings are grouped in blocks with curly braces, e.g. per-plugin settings:

audio_output {
 type "alsa"
 name "My ALSA output"
 device "iec958:CARD=Intel,DEV=0"
 mixer_control "PCM"
}

The include directive can be used to include settings from
another file; the given file name is relative to the current file:

include "other.conf"

You can use include_optional instead if you want the included file
to be optional; the directive will be ignored if the file does not exist:

include_optional "may_not_exist.conf"

Configuring the music directory

When you play local files, you should organize them within a directory called the “music directory”. This is configured in MPD with the music_directory setting.

By default, MPD follows symbolic links in the music directory. This behavior can be switched off: follow_outside_symlinks controls whether MPD follows links pointing to files outside of the music directory, and follow_inside_symlinks lets you disable symlinks to files inside the music directory.

Instead of using local files, you can use storage plugins to access
files on a remote file server. For example, to use music from the
SMB/CIFS server “myfileserver” on the share called “Music”,
configure the music directory “smb://myfileserver/Music”. For
a recipe, read the Satellite MPD section Satellite setup.

You can also use multiple storage plugins to assemble a virtual music directory consisting of multiple storages.

Configuring database plugins

If a music directory is configured, one database plugin is used. To
configure this plugin, add a database block to
mpd.conf:

database {
 plugin "simple"
 path "/var/lib/mpd/db"
}

More information can be found in the Database plugins
reference.

Configuring Partitions

MPD can have multiple “partitions”, that is, multiple
independent players, each with their own queue and outputs. All
partitions share one database. By default, there is only one
partition called “default”. Additional partitions can be created in
the configuration file with partition blocks or at runtime with
the newpartition command.

Example for specifying an additional partition in the configuration
file:

partition {
 name "foo"
}

The following options are available in partition blocks:

	Name

	Description

	name

	The name of the partition.

Configuring neighbor plugins

All neighbor plugins are disabled by default to avoid unwanted
overhead. To enable (and configure) a plugin, add a neighbor
block to mpd.conf:

neighbors {
 plugin "smbclient"
}

More information can be found in the Neighbor plugins reference.

Configuring input plugins

To configure an input plugin, add an input block to
mpd.conf:

input {
 plugin "curl"
 proxy "proxy.local"
}

The following table lists the input options valid for all plugins:

	Name

	Description

	plugin

	The name of the plugin

	enabled yes|no

	Allows you to disable a input plugin without recompiling. By default, all plugins are enabled.

More information can be found in the Input plugins reference.

Configuring archive plugins

To configure an archive plugin, add an archive_plugin block to
mpd.conf:

archive_plugin {
 name "zzip"
 enabled "no"
}

The following table lists the input options valid for all plugins:

	Name

	Description

	name

	The name of the plugin

	enabled yes|no

	Allows you to disable a plugin without recompiling. By
default, all plugins are enabled.

More information can be found in the Archive plugins reference.

Configuring the Input Cache

The input cache prefetches queued song files before they are going to
be played. This has several advantages:

	risk of buffer underruns during playback is reduced because this
decouples playback from disk (or network) I/O

	bulk transfers may be faster and more energy efficient than loading
small chunks on-the-fly

	by prefetching several songs at a time, the hard disk can spin down
for longer periods of time

This comes at a cost:

	memory usage

	bulk transfers may reduce the performance of other applications
which also want to access the disk (if the kernel’s I/O scheduler
isn’t doing its job properly)

To enable the input cache, add an input_cache block to the
configuration file:

input_cache {
 size "1 GB"
}

This allocates a cache of 1 GB. If the cache grows larger than that,
older files will be evicted.

You can flush the cache at any time by sending SIGHUP to the
MPD process, see Signals.

Configuring decoder plugins

Most decoder plugins do not need any special configuration. To
configure a decoder, add a decoder block to mpd.conf:

decoder {
 plugin "wildmidi"
 config_file "/etc/timidity/timidity.cfg"
}

The following table lists the decoder options valid for all plugins:

	Name

	Description

	plugin

	The name of the plugin

	enabled yes|no

	Allows you to disable a decoder plugin without recompiling. By default, all plugins are enabled.

More information can be found in the Decoder plugins reference.

Configuring encoder plugins

Encoders are used by some of the output plugins (such as shout). The
encoder settings are included in the audio_output section, see Configuring audio outputs.

More information can be found in the Encoder plugins reference.

Configuring audio outputs

Audio outputs are devices which actually play the audio chunks produced by MPD. You can configure any number of audio output devices, but there must be at least one. If none is configured, MPD attempts to auto-detect. Usually, this works quite well with ALSA, OSS and on Mac OS X.

To configure an audio output manually, add one or more
audio_output blocks to mpd.conf:

audio_output {
 type "alsa"
 name "my ALSA device"
 device "hw:0"
}

The following table lists the audio_output options valid for all plugins:

	Name

	Description

	type

	The name of the plugin

	name

	The name of the audio output. It is visible to the client. Some plugins also use it internally, e.g. as a name registered in the PULSE server.

	format samplerate:bits:channels

	Always open the audio output with the specified audio format, regardless of the format of the input file. This is optional for most plugins.
See Global Audio Format for a detailed description of the value.

	enabled yes|no

	Specifies whether this audio output is enabled when MPD is started. By default, all audio outputs are enabled. This is just the default setting when there is no state file; with a state file, the previous state is restored.

	tags yes|no

	If set to no, then MPD will not send tags to this output. This is only useful for output plugins that can receive tags, for example the httpd output plugin.

	always_on yes|no

	If set to yes, then MPD attempts to keep this audio output always open. This may be useful for streaming servers, when you don’t want to disconnect all listeners even when playback is accidentally stopped.

	mixer_type hardware|software|null|none

	Specifies which mixer should be used for this audio output: the
hardware mixer (available for ALSA alsa, OSS
oss and PulseAudio pulse), the
software mixer, the “null” mixer (allows setting the
volume, but with no effect; this can be used as a trick to
implement an external mixer, see External Mixer) or no mixer
(none). By default, the hardware mixer is used for
devices which support it, and none for the others.

	replay_gain_handler software|mixer|none

	Specifies how Replay Gain is applied. The default is
software, which uses an internal software volume control.
mixer uses the configured (hardware) mixer control.
none disables replay gain on this audio output.

	filters “name,…”

	The specified configured filters are instantiated in the given
order. Each filter name refers to a filter block, see
Configuring filters.

More information can be found in the Output plugins reference.

Configuring filters

Filters are plugins which modify an audio stream.

To configure a filter, add a filter block to mpd.conf:

filter {
 plugin "volume"
 name "software volume"
}

Configured filters may then be added to the filters setting of an
audio_output section, see Configuring audio outputs.

The following table lists the filter options valid for all plugins:

	Name

	Description

	plugin

	The name of the plugin

	name

	The name of the filter

More information can be found in the Filter plugins reference.

Configuring playlist plugins

Playlist plugins are used to load remote playlists (protocol commands
load, listplaylist and listplaylistinfo). This is not related to
MPD’s playlist directory.

To configure a playlist plugin, add a playlist_plugin block to
mpd.conf:

playlist_plugin {
 name "m3u"
 enabled "true"
}

The following table lists the playlist_plugin options valid for all plugins:

	Name

	Description

	name

	The name of the plugin

	enabled yes|no

	Allows you to disable a playlist plugin without recompiling. By default, all plugins are enabled.

	as_directory yes|no

	With this option, a playlist file of this type is parsed during
database update and converted to a virtual directory, allowing
MPD clients to access individual entries. By default, this is
only enabled for the cue plugin.

More information can be found in the Playlist plugins
reference.

Audio Format Settings

Global Audio Format

The setting audio_output_format forces MPD to use one
audio format for all outputs. Doing that is usually not a good idea.

The value is specified as samplerate:bits:channels.

Any of the three attributes may be an asterisk to specify that this
attribute should not be enforced, example: 48000:16:*.
::* is equal to not having a format specification.

The following values are valid for bits: 8 (signed 8 bit integer
samples), 16, 24 (signed 24 bit integer samples padded to 32
bit), 32 (signed 32 bit integer samples), f (32 bit floating
point, -1.0 to 1.0), dsd means DSD (Direct Stream Digital). For
DSD, there are special cases such as dsd64, which allows you to
omit the sample rate (e.g. dsd512:2 for stereo DSD512,
i.e. 22.5792 MHz).

The sample rate is special for DSD: MPD counts the number
of bytes, not bits. Thus, a DSD “bit” rate of 22.5792 MHz (DSD512) is
2822400 from MPD’s point of view (44100*512/8).

Resampler

Sometimes, music needs to be resampled before it can be played; for example, CDs use a sample rate of 44,100 Hz while many cheap audio chips can only handle 48,000 Hz. Resampling reduces the quality and consumes a lot of CPU. There are different options, some of them optimized for high quality and others for low CPU usage, but you can’t have both at the same time. Often, the resampler is the component that is responsible for most of MPD’s CPU usage. Since MPD comes with high quality defaults, it may appear that MPD consumes more CPU than other software.

Check the Resampler plugins reference for a list of resamplers
and how to configure them.

Volume Normalization Settings

Replay Gain

The setting replaygain specifies whether MPD shall adjust the
volume of songs played using ReplayGain [https://wiki.hydrogenaud.io/index.php?title=Replaygain] tags.
Setting this to album will adjust volume using the album’s
ReplayGain tags, while setting it to track will adjust it using
the “track” ReplayGain tags. auto uses the track ReplayGain tags
if random play is activated otherwise the album ReplayGain
tags.

If ReplayGain is enabled, then the setting replaygain_preamp is
set to a value (in dB) between -15 and 15. This is the gain
applied to songs with ReplayGain tags.

ReplayGain is usually implemented with a software volume filter (which
prevents Bit-perfect playback). To use a hardware mixer, set
replay_gain_handler to mixer in the audio_output section
(see Configuring audio outputs for details).

Simple Volume Normalization

MPD implements a very simple volume normalization method which can be
enabled by setting volume_normalization to yes. It supports
16 bit PCM only.

Cross-Fading

If crossfade is set to a positive number, then adjacent songs are
cross-faded by this number of seconds. This is a run-time setting
which can be controlled by clients,
e.g. with mpc:

mpc crossfade 10
mpc crossfade 0

Zero means cross-fading is disabled.

Cross-fading is only possible if both songs have the same audio
format. At the cost of quality loss and higher CPU usage, you can
make sure this is always given by configuring
Global Audio Format.

MixRamp

MixRamp tags describe the loudness levels at start and end of a song
and can be used by MPD to find the best time to begin cross-fading.
MPD enables MixRamp if:

	Cross-fade is enabled

	mixrampdelay is set to a positive
value, e.g.:

mpc mixrampdelay 1

	mixrampdb is set to a reasonable value,
e.g.:

mpc mixrampdb -17

	both songs have MixRamp tags (or mixramp_analyzer is enabled)

	both songs have the same audio format (or Global Audio Format
is configured)

The MixRamp [http://sourceforge.net/projects/mixramp] tool can be
used to add MixRamp tags to your song files. To analyze songs
on-the-fly, you can enable the mixramp_analyzer option in
mpd.conf:

mixramp_analyzer "yes"

Client Connections

Listeners

The setting bind_to_address specifies which addresses
MPD listens on for connections from clients. It can be
used multiple times to bind to more than one address. Example:

bind_to_address "192.168.1.42"
bind_to_address "127.0.0.1"

The default is “any”, which binds to all available addresses.
Additionally, MPD binds to $XDG_RUNTIME_DIR/mpd/socket (if it
was launched as a per-user daemon and no bind_to_address
setting exists).

You can set a port that is different from the global port setting,
e.g. “localhost:6602”. IPv6 addresses must be enclosed in square
brackets if you want to configure a port:

bind_to_address "[::1]:6602"

To bind to a local socket (UNIX domain socket), specify an absolute
path or a path starting with a tilde (~). Some clients default to
connecting to /var/run/mpd/socket so this may be a good
choice:

bind_to_address "/var/run/mpd/socket"

On Linux, local sockets can be bound to a name without a socket inode
on the filesystem; MPD implements this by prepending @ to the
address:

bind_to_address "@mpd"

If no port is specified, the default port is 6600. This default can
be changed with the port setting:

port "6601"

These settings will be ignored if systemd socket activation is
used.

Permissions and Passwords

By default, all clients are unauthenticated and have a full set of permissions. This can be restricted with the settings default_permissions and password.

default_permissions controls the permissions of a new client. Its value is a comma-separated list of permissions:

	Name

	Description

	read

	Allows reading of the database, displaying the current playlist, and current status of MPD.

	add

	Allows adding songs and loading playlists.

	player

	Allows any player and queue manipulation (start/pause/stop
playback etc.).

	control

	Allows all other player and playlist manipulations.

	admin

	Allows manipulating outputs, stickers and partitions,
mounting/unmounting storage and shutting down MPD.

local_permissions may be used to assign other permissions to clients connecting on a local socket.

host_permissions may be used to assign permissions to clients
with a certain IP address.

password allows the client to send a password to gain other permissions. This option may be specified multiple times with different passwords.

Note that the password option is not secure: passwords are sent in clear-text over the connection, and the client cannot verify the server’s identity.

Example:

default_permissions "read"
host_permissions "192.168.0.100 read,add,control,admin"
host_permissions "2003:1234:4567::1 read,add,control,admin"
password "the_password@read,add,control"
password "the_admin_password@read,add,control,admin"

Other Settings

	Setting

	Description

	metadata_to_use TAG1,TAG2,…

	Use only the specified tags, and ignore the others. This
setting can reduce the database size and MPD’s
memory usage by omitting unused tags. By default, all tags but
comment are enabled. The special value “none” disables all
tags.

If the setting starts with + or -, then the following
tags will be added or remoted to/from the current set of tags.
This example just enables the “comment” tag without disabling all
the other supported tags

metadata_to_use “+comment”

Section Tags contains a list of supported tags.

The State File

The state file is a file where MPD saves and restores its state (play queue, playback position etc.) to keep it persistent across restarts and reboots. It is an optional setting.

MPD will attempt to load the state file during startup, and will save it when shutting down the daemon. Additionally, the state file is refreshed every two minutes (after each state change).

	Setting

	Description

	state_file PATH

	Specify the state file location. The parent directory must be writable by the MPD user (+wx).

	state_file_interval SECONDS

	Auto-save the state file this number of seconds after each state change. Defaults to 120 (2 minutes).

	restore_paused yes|no

	If set to yes, then MPD is put into pause mode instead of starting playback after startup. Default is no.

The Sticker Database

“Stickers” are pieces of information attached to songs. Some clients
use them to store ratings and other volatile data. This feature
requires SQLite, compile-time configure option
-Dsqlite=....

	Setting

	Description

	sticker_file PATH

	The location of the sticker database.

Resource Limitations

These settings are various limitations to prevent MPD from using too many resources (denial of service).

	Setting

	Description

	connection_timeout SECONDS

	If a client does not send any new data in this time period, the connection is closed. Clients waiting in “idle” mode are excluded from this. Default is 60.

	max_connections NUMBER

	This specifies the maximum number of clients that can be connected to MPD at the same time. Default is 100.

	max_playlist_length NUMBER

	The maximum number of songs that can be in the playlist. Default is 16384.

	max_command_list_size KBYTES

	The maximum size a command list. Default is 2048 (2 MiB).

	max_output_buffer_size KBYTES

	The maximum size of the output buffer to a client (maximum response size). Default is 8192 (8 MiB).

Buffer Settings

Do not change these unless you know what you are doing.

	Setting

	Description

	audio_buffer_size SIZE

	Adjust the size of the internal audio buffer. Default is
4 MB (4 MiB).

Zeroconf

If Zeroconf support (Avahi [http://avahi.org/] or Apple’s Bonjour)
was enabled at compile time with -Dzeroconf=...,
MPD can announce its presence on the network. The following
settings control this feature:

	Setting

	Description

	zeroconf_enabled yes|no

	Enables or disables this feature. Default is yes.

	zeroconf_name NAME

	The service name to publish via Zeroconf. The default is “Music Player @ %h”.
%h will be replaced with the hostname of the machine running MPD.

Advanced configuration

Satellite setup

MPD runs well on weak machines such as the Raspberry Pi. However, such hardware tends to not have storage big enough to hold a music collection. Mounting music from a file server can be very slow, especially when updating the database.

One approach for optimization is running MPD on the file server, which not only exports raw files, but also provides access to a readily scanned database. Example configuration:

music_directory "nfs://fileserver.local/srv/mp3"
#music_directory "smb://fileserver.local/mp3"

database {
 plugin "proxy"
 host "fileserver.local"
}

The music_directory setting tells MPD to read files from the given NFS server. It does this by connecting to the server from userspace. This does not actually mount the file server into the kernel’s virtual file system, and thus requires no kernel cooperation and no special privileges. It does not even require a kernel with NFS support, only the nfs storage plugin (using the libnfs userspace library). The same can be done with SMB/CIFS using the smbclient storage plugin (using libsmbclient).

The database setting tells MPD to pass all database queries on to the MPD instance running on the file server (using the proxy plugin).

Real-Time Scheduling

On Linux, MPD attempts to configure real-time scheduling for some threads that benefit from it.

This is only possible if you allow MPD to do it. This privilege is controlled by RLIMIT_RTPRIO RLIMIT_RTTIME. You can configure this privilege with ulimit before launching MPD:

ulimit -HS -r 40; mpd

Or you can use the prlimit program from the util-linux package:

prlimit --rtprio=40 --rttime=unlimited mpd

The systemd service file shipped with MPD comes with this setting.

This works only if the Linux kernel was compiled with CONFIG_RT_GROUP_SCHED disabled. Use the following command(s) to check this option for your current kernel:

zgrep ^CONFIG_RT_GROUP_SCHED /proc/config.gz
OR
grep ^CONFIG_RT_GROUP_SCHED /boot/config
OR
grep ^CONFIG_RT_GROUP_SCHED /boot/config-$(uname -r)

You can verify whether the real-time scheduler is active with the ps command:

ps H -q `pidof -s mpd` -o 'pid,tid,cls,rtprio,comm'
 PID TID CLS RTPRIO COMMAND
16257 16257 TS - mpd
16257 16258 TS - io
16257 16259 FF 40 rtio
16257 16260 TS - player
16257 16261 TS - decoder
16257 16262 FF 40 output:ALSA
16257 16263 IDL 0 update

The CLS column shows the CPU scheduler; TS is the normal scheduler; FF and RR are real-time schedulers. In this example, two threads use the real-time scheduler: the output thread and the rtio (real-time I/O) thread; these two are the important ones. The database update thread uses the idle scheduler (“IDL in ps), which only gets CPU when no other process needs it.

Note

There is a rumor that real-time scheduling improves audio
quality. That is not true. All it does is reduce the probability of
skipping (audio buffer xruns) when the computer is under heavy
load.

Using MPD

Starting and Stopping MPD

The simplest (but not the best) way to start MPD is to
simply type:

mpd

This will start MPD as a daemon process (which means it
detaches from your terminal and continues to run in background). To
stop it, send SIGTERM to the process; if you have configured a
pid_file, you can use the --kill option:

mpd --kill

The best way to manage MPD processes is to use a service
manager such as systemd.

systemd

MPD ships with systemd service units.

If you have installed MPD with your operating system’s
package manager, these are probably preinstalled, so you can start and
stop MPD this way (like any other service):

systemctl start mpd
systemctl stop mpd

systemd socket activation

Using systemd, you can launch MPD on demand when the first client attempts to connect.

MPD comes with two systemd unit files: a “service” unit and
a “socket” unit. These will be installed to the directory specified
with -Dsystemd_system_unit_dir=...,
e.g. /lib/systemd/system.

To enable socket activation, type:

systemctl enable mpd.socket
systemctl start mpd.socket

In this configuration, MPD will ignore the listener
settings (bind_to_address and port).

systemd user unit

You can launch MPD as a systemd user unit. These will be
installed to the directory specified with
-Dsystemd_user_unit_dir=...,
e.g. /usr/lib/systemd/user or
$HOME/.local/share/systemd/user.

Once the user unit is installed, you can start and stop MPD like any other service:

systemctl --user start mpd

To auto-start MPD upon login, type:

systemctl --user enable mpd

Signals

MPD understands the following UNIX signals:

	SIGTERM, SIGINT: shut down MPD

	SIGHUP: reopen log files (send this after log rotation) and
flush caches (see Configuring the Input Cache)

The client

After you have installed, configured and started MPD, you choose a client to control the playback.

The most basic client is mpc, which provides a command line interface. It is useful in shell scripts. Many people bind specific mpc commands to hotkeys.

The MPD Wiki [http://www.musicpd.org/clients/] contains an extensive list of clients to choose from.

The music directory and the database

The “music directory” is where you store your music files. MPD stores all relevant meta information about all songs in its “database”. Whenever you add, modify or remove songs in the music directory, you have to update the database, for example with mpc:

mpc update

Depending on the size of your music collection and the speed of the storage, this can take a while.

To exclude a file from the update, create a file called
.mpdignore in its parent directory. Each line of that file
may contain a list of shell wildcards. Matching files (or
directories) in the current directory and all subdirectories are
excluded. Example:

*.opus
99*

Subject to pattern matching is the file/directory name. It is (not
yet) possible to match nested path names, e.g. something like
foo/*.flac is not possible.

Mounting other storages into the music directory

MPD has various storage plugins of which multiple instances can be “mounted” into the music directory. This way, you can use local music, file servers and USB sticks at the same time. Example:

mpc mount foo nfs://192.168.1.4/export/mp3
mpc mount usbstick udisks://by-uuid-2F2B-D136
mpc unmount usbstick

MPD’s neighbor plugins can be helpful with finding mountable storages:

mpc listneighbors

Mounting is only possible with the simple database plugin and a cache_directory, e.g.:

database {
 plugin "simple"
 path "~/.mpd/db"
 cache_directory "~/.mpd/cache"
}

This requires migrating from the old db_file setting to a database section. The cache directory must exist, and MPD will put one file per mount there, which will be reused when the same storage is used again later.

Metadata

When scanning or playing a song, MPD parses its metadata.
See Tags for a list of supported tags.

The metadata_to_use setting can be used to
enable or disable certain tags.

Note that MPD may not necessarily read metadata itself,
instead relying on data reported by the decoder that was used to read
a file. For example, this is the case for the FFmpeg decoder: both
MPD and FFmpeg need to support a given metadata format in
order for metadata to be picked up correctly.

Only if a decoder does not have metadata support will MPD
attempt to parse a song’s metadata itself.

The queue

The queue (sometimes called “current playlist”) is a list of songs to be played by MPD. To play a song, add it to the queue and start playback. Most clients offer an interface to edit the queue.

Stored Playlists

Stored playlists are some kind of secondary playlists which can be
created, saved, edited and deleted by the client. They are addressed
by their names. Its contents can be loaded into the queue, to be
played back. The playlist_directory setting specifies where
those playlists are stored.

Advanced usage

Bit-perfect playback

“Bit-perfect playback” is a phrase used by audiophiles to describe a setup that plays back digital music as-is, without applying any modifications such as resampling, format conversion or software volume. Naturally, this implies a lossless codec.

By default, MPD attempts to do bit-perfect playback, unless you tell it not to. Precondition is a sound chip that supports the audio format of your music files. If the audio format is not supported, MPD attempts to fall back to the nearest supported audio format, trying to lose as little quality as possible.

To verify if MPD converts the audio format, enable verbose logging, and watch for these lines:

decoder: audio_format=44100:24:2, seekable=true
output: opened plugin=alsa name="An ALSA output" audio_format=44100:16:2
output: converting from 44100:24:2

This example shows that a 24 bit file is being played, but the sound chip cannot play 24 bit. It falls back to 16 bit, discarding 8 bit.

However, this does not yet prove bit-perfect playback; ALSA may be fooling MPD that the audio format is supported. To verify the format really being sent to the physical sound chip, try:

cat /proc/asound/card*/pcm*p/sub*/hw_params
access: RW_INTERLEAVED
format: S16_LE
subformat: STD
channels: 2
rate: 44100 (44100/1)
period_size: 4096
buffer_size: 16384

Obey the “format” row, which indicates that the current playback format is 16 bit (signed 16 bit integer, little endian).

Check list for bit-perfect playback:

	Use the ALSA output plugin.

	Disable sound processing inside ALSA by configuring a “hardware”
device (hw:0,0 or similar).

	Don’t use software volume (setting mixer_type).

	Don’t use Replay Gain.

	Don’t force MPD to use a specific audio format (settings
format, audio_output_format).

	Verify that you are really doing bit-perfect playback using MPD’s verbose log and /proc/asound/card*/pcm*p/sub*/hw_params. Some DACs can also indicate the audio format.

Direct Stream Digital (DSD)

DSD (Direct Stream Digital [https://en.wikipedia.org/wiki/Direct_Stream_Digital]) is a digital
format that stores audio as a sequence of single-bit values at a very
high sampling rate. It is the sample format used on Super Audio CDs [https://en.wikipedia.org/wiki/Super_Audio_CD].

MPD understands the file formats DSDIFF and DSF. There are three ways
to play back DSD:

	Native DSD playback. Requires ALSA 1.0.27.1 or later, a sound driver/chip that supports DSD and of course a DAC that supports DSD.

	DoP (DSD over PCM) playback. This wraps DSD inside fake 24 bit PCM according to the DoP standard. Requires a DAC that supports DSD. No support from ALSA and the sound chip required (except for bit-perfect 24 bit PCM support).

	Convert DSD to PCM on-the-fly.

Native DSD playback is used automatically if available. DoP is only
used if enabled explicitly using the dop option, because there
is no way for MPD to find out whether the DAC supports
it. DSD to PCM conversion is the fallback if DSD cannot be used
directly.

ICY-MetaData

Some MP3 streams send information about the current song with a
protocol named “ICY-MetaData” [http://www.smackfu.com/stuff/programming/shoutcast.html].
MPD makes its StreamTitle value available as Title
tag.

By default, MPD assumes this tag is UTF-8-encoded. To tell
MPD to assume a different character set, specify it in the
charset URL fragment parameter, e.g.:

mpc add 'http://radio.example.com/stream#charset=cp1251'

Client Hacks

External Mixer

The setting mixer_type "null" asks MPD to pretend that there is a mixer, but not actually do something. This allows you to implement a MPD client which listens for mixer events, queries the current (fake) volume, and uses it to program an external mixer. For example, your client can forward this setting to your amplifier.

Troubleshooting

Where to start

Make sure you have the latest MPD version (via mpd --version, not mpc version). All the time, bugs are found and fixed, and your problem might be a bug that is fixed already. Do not ask for help unless you have the latest MPD version. The most common excuse is when your distribution ships an old MPD version - in that case, please ask your distribution for help, and not the MPD project.

Check the log file. Configure log_level "verbose" or pass --verbose to mpd.

Sometimes, it is helpful to run MPD in a terminal and follow what happens. This is how to do it:

mpd --stderr --no-daemon --verbose

Support

Getting Help

The MPD project runs a forum [https://forum.musicpd.org/] and an IRC channel (#mpd on Libera.Chat) for requesting help. Visit the MPD help page for details on how to get help.

Common Problems

Startup

Error “could not get realtime scheduling”

See Real-Time Scheduling. You can safely ignore this, but you won’t
benefit from real-time scheduling. This only makes a difference if
your computer runs programs other than MPD.

Error “Failed to initialize io_uring”

Linux specific: the io_uring subsystem could not be initialized. This
is not a critical error - MPD will fall back to “classic” blocking
disk I/O. You can safely ignore this error, but you won’t benefit
from io_uring’s advantages.

	“Cannot allocate memory” usually means that your memlock limit
(ulimit -l in bash or LimitMEMLOCK in systemd) is too low.
64 MB is a reasonable value for this limit.

	Your Linux kernel might be too old and does not support io_uring.

Error “bind to ‘0.0.0.0:6600’ failed (continuing anyway, because binding to ‘[::]:6600’ succeeded)”

This happens on Linux when /proc/sys/net/ipv6/bindv6only is
disabled. MPD first binds to IPv6, and this automatically binds to
IPv4 as well; after that, MPD binds to IPv4, but that fails. You can
safely ignore this, because MPD works on both IPv4 and IPv6.

Database

I can’t see my music in the MPD database

	Check your music_directory setting.

	Does the MPD user have read permission on all music files, and read+execute permission on all music directories (and all of their parent directories)?

	Did you update the database? (mpc update)

	Did you enable all relevant decoder plugins at compile time? mpd --version will tell you.

MPD doesn’t read ID3 tags!

	You probably compiled MPD without libid3tag. mpd --version will tell you.

Playback

I can’t hear music on my client

	That problem usually follows a misunderstanding of the nature of MPD. MPD is a remote-controlled music player, not a music distribution system. Usually, the speakers are connected to the box where MPD runs, and the MPD client only sends control commands, but the client does not actually play your music.

MPD has output plugins which allow hearing music on a remote host (such as httpd), but that is not MPD’s primary design goal.

Error “Device or resource busy”

	This ALSA error means that another program uses your sound hardware exclusively. You can stop that program to allow MPD to use it.

Sometimes, this other program is PulseAudio, which can multiplex sound from several applications, to allow them to share your sound chip. In this case, it might be a good idea for MPD to use PulseAudio as well, instead of using ALSA directly.

Reporting Bugs

If you believe you found a bug in MPD, report it on the bug tracker [https://github.com/MusicPlayerDaemon/MPD/issues].

Your bug report should contain:

	the output of mpd --version

	your configuration file (mpd.conf)

	relevant portions of the log file (--verbose)

	be clear about what you expect MPD to do, and what is actually happening

Too Much CPU Usage

If you believe MPD consumes too much CPU, write a bug report [https://github.com/MusicPlayerDaemon/MPD/issues] with a profiling
information.

On Linux, this can be obtained with perf (on Debian,
installed the package linux-perf), for example:

perf record -p `pidof mpd`

Run this command while MPD consumes much CPU, let it run for a minute
or so, and stop it by pressing Ctrl-C. Then type:

perf report >mpd_perf.txt

Upload the output file to the bug report.

Note

This requires having debug symbols for MPD and all relevant
libraries. See MPD crashes for details.

MPD crashes

All MPD crashes are bugs which must be fixed by a developer, and you should write a bug report. (Many crash bugs are caused by codec libraries used by MPD, and then that library must be fixed; but in any case, the MPD bug tracker [https://github.com/MusicPlayerDaemon/MPD/issues] is a good place to report it first if you don’t know.)

A crash bug report needs to contain a “backtrace”.

First of all, your MPD executable must not be “stripped”
(i.e. debug information deleted). The executables shipped with Linux
distributions are usually stripped, but some have so-called “debug”
packages (package mpd-dbgsym or mpd-dbg on Debian,
mpd-debug on other distributions). Make sure this package is
installed.

If you built MPD from sources, please recompile with Meson
option “--buildtype=debug -Db_ndebug=false”, because this will
add more helpful information to the backtrace.

You can extract the backtrace from a core dump, or by running MPD in a debugger, e.g.:

gdb --args mpd --stderr --no-daemon --verbose
run

As soon as you have reproduced the crash, type “bt” on the
gdb command prompt. Copy the output to your bug report.

Plugin reference

Database plugins

simple

The default plugin. Stores a copy of the database in memory. A file is used for permanent storage.

	Setting

	Description

	path

	The path of the database file.

	cache_directory

	The path of the cache directory for additional storages mounted at runtime. This setting is necessary for the mount protocol command.

	compress yes|no

	Compress the database file using gzip? Enabled by default (if built with zlib).

	hide_playlist_targets yes|no

	Hide songs which are referenced by playlists? Thas is,
playlist files which are represented in the database as virtual
directories (playlist plugin setting as_directory). This
option is enabled by default and avoids duplicate songs; one
copy for the original file, and another copy in the virtual
directory of a CUE file referring to it.

proxy

Provides access to the database of another MPD instance
using libmpdclient [https://www.musicpd.org/libs/libmpdclient/]. This is useful when
you mount the music directory via NFS/SMB, and the file server already
runs a MPD (0.20 or newer) instance. Only the file server
needs to update the database.

	Setting

	Description

	host

	The host name of the “master” MPD instance.

	port

	The port number of the “master” MPD instance.

	password

	The password used to log in to the “master” MPD instance.

	keepalive yes|no

	Send TCP keepalive packets to the “master” MPD instance? This option can help avoid certain firewalls dropping inactive connections, at the expense of a very small amount of additional network traffic. Disabled by default.

upnp

Provides access to UPnP media servers.

	Setting

	Description

	interface

	Interface used to discover media servers. Decided by upnp if left unconfigured.

Storage plugins

local

The default plugin which gives MPD access to local files. It is used when music_directory refers to a local directory.

curl

A WebDAV client using libcurl. It is used when music_directory
contains a http:// or https:// URI, for example
https://the.server/dav/.

smbclient

Load music files from a SMB/CIFS server. It is used when
music_directory contains a smb:// URI, for example
smb://myfileserver/Music.

Note that libsmbclient has a serious bug which causes MPD to
crash, and therefore this plugin is disabled by default and should not
be used until the bug is fixed:
https://bugzilla.samba.org/show_bug.cgi?id=11413

nfs

Load music files from a NFS server. It is used when
music_directory contains a nfs:// URI according to
RFC2224, for example nfs://servername/path.

See nfs for more information.

udisks

Mount file systems (e.g. USB sticks or other removable media) using
the udisks2 daemon via D-Bus. To obtain a valid udisks2 URI, consult
the according neighbor plugin.

It might be necessary to grant MPD privileges to control
udisks2 through policykit. To do this, create a
file called /usr/share/polkit-1/rules.d/mpd-udisks.rules with
the following text:

polkit.addRule(function(action, subject) {
 if ((action.id == "org.freedesktop.udisks2.filesystem-mount" ||
 action.id == "org.freedesktop.udisks2.filesystem-mount-other-seat") &&
 subject.user == "mpd") {
 return polkit.Result.YES;
 }
});

If you run MPD as a different user, change mpd to the name of your
MPD user.

Neighbor plugins

smbclient

Provides a list of SMB/CIFS servers on the local network.

udisks

Queries the udisks2 daemon via D-Bus and obtains a list of file systems (e.g. USB sticks or other removable media).

upnp

Provides a list of UPnP servers on the local network.

Input plugins

alsa

Allows MPD on Linux to play audio directly from a soundcard using the scheme alsa://. Audio is by default formatted as 48 kHz 16-bit stereo, but this default can be overidden by a config file setting or by the URI. Examples:

mpc add alsa:// plays audio from device default

mpc add alsa://hw:1,0 plays audio from device hw:1,0

mpc add alsa://hw:1,0?format=44100:16:2 plays audio from device hw:1,0 sampling 16-bit stereo at 44.1kHz.

	Setting

	Description

	default_device NAME

	The alsa device id to use when none is specified in the URI.

	default_format F

	The sampling rate, size and channels to use. Wildcards are not allowed.

Example - “44100:16:2”

	auto_resample yes|no

	If set to no, then libasound will not attempt to resample. In this case, the user is responsible for ensuring that the requested sample rate can be produced natively by the device, otherwise an error will occur.

	auto_channels yes|no

	If set to no, then libasound will not attempt to convert between different channel numbers. The user must ensure that the device supports the requested channels when sampling.

	auto_format yes|no

	If set to no, then libasound will not attempt to convert between different sample formats (16 bit, 24 bit, floating point, …). Again the user must ensure that the requested format is available natively from the device.

cdio_paranoia

Plays audio CDs using libcdio. The URI has the form: “cdda://[DEVICE][/TRACK]”. The simplest form cdda:// plays the whole disc in the default drive.

	Setting

	Description

	default_byte_order little_endian|big_endian

	If the CD drive does not specify a byte order, MPD assumes it is the CPU’s native byte order. This setting allows overriding this.

	speed N

	Request CDParanoia cap the extraction speed to Nx normal CD audio rotation speed, keeping the drive quiet.

	mode disable|overlap|full

	Set the paranoia mode; disable means no fixups, overlap
performs overlapped reads, and full enables all options.

	skip yes|no

	If set to no, then never skip failed reads.

curl

Opens remote files or streams over HTTP using libcurl.

Note that unless overridden by the below settings (e.g. by setting
them to a blank value), general curl configuration from environment
variables such as http_proxy will be in effect.

User name and password are read from an optional ~/.netrc, ~/.curlrc is not read.

	Setting

	Description

	Default

	proxy

	Sets the address of the HTTP proxy server.

	

	proxy_user, proxy_password

	Configures proxy authentication.

	

	verify_peer yes|no

	Verify the peer’s SSL certificate? More information [http://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYPEER.html].

	yes

	verify_host yes|no

	Verify the certificate’s name against host? More information [http://curl.haxx.se/libcurl/c/CURLOPT_SSL_VERIFYHOST.html].

	yes

	cacert

	Set path to Certificate Authority (CA) bundle More information [https://curl.se/libcurl/c/CURLOPT_CAINFO.html].

	

	connect_timeout 1

	Set the the connect phase timeout in seconds. “0” is libcurl’s default built-in connection timeout - 300 seconds.
More information [https://curl.se/libcurl/c/CURLOPT_CONNECTTIMEOUT.html].

	10

	verbose yes|no 1

	Set the onoff parameter to 1 to make the library display a lot of verbose information.
More information [https://curl.se/libcurl/c/CURLOPT_VERBOSE.html].

	no

	low_speed_limit 1

	The average transfer speed in bytes per second that the transfer should be below during low_speed_time seconds for libcurl to consider it to be too slow and abort.
More information [https://curl.se/libcurl/c/CURLOPT_LOW_SPEED_LIMIT.html].

	0 (disabled)

	low_speed_time 1

	The time in number seconds that the transfer speed should be below the low_speed_limit for the libcurl to consider it too slow and abort.
More information [https://curl.se/libcurl/c/CURLOPT_LOW_SPEED_TIME.html].

	0 (disabled)

	tcp_keepalive yes|no 1

	If set to yes, TCP keepalive probes will be sent. The delay and frequency of these probes can be controlled by the tcp_keepidle and tcp_keepintvl options, provided the operating system supports them.
More information [https://curl.se/libcurl/c/CURLOPT_TCP_KEEPALIVE.html].

	no (disabled)

	tcp_keepidle 1

	Sets the delay, in seconds, that the operating system will wait while the connection is idle before sending keepalive probes. Not all operating systems support this option.
More information [https://curl.se/libcurl/c/CURLOPT_TCP_KEEPIDLE.html].

	60

	tcp_keepintvl 1

	Sets the interval, in seconds, that the operating system will wait between sending keepalive probes. Not all operating systems support this option.
More information [https://curl.se/libcurl/c/CURLOPT_TCP_KEEPINTVL.html].

	60

Note: the low_speed and tcp_keep options may help solve network interruptions and connections dropped by server. Please refer to this curl issue for discussion: https://github.com/curl/curl/issues/8345

ffmpeg

Access to various network protocols implemented by the FFmpeg library:
gopher://, rtp://, rtsp://, rtmp://, rtmpt://,
rtmps://

file

Opens local files

mms

Plays streams with the MMS protocol using libmms [https://launchpad.net/libmms].

nfs

Allows MPD to access files on NFS servers without actually
mounting them (i.e. with libnfs in userspace, without help
from the kernel’s VFS layer). All URIs with the nfs:// scheme are
used according to RFC2224. Example:

mpc add nfs://servername/path/filename.ogg

This plugin uses libnfs, which supports only NFS version 3.
Since MPD is not allowed to bind to so-called “privileged
ports”, the NFS server needs to enable the insecure setting;
example /etc/exports:

/srv/mp3 192.168.1.55(ro,insecure)

Don’t fear: this will not make your file server insecure; the flag was
named a time long ago when privileged ports were thought to be
meaningful for security. By today’s standards, NFSv3 is not secure at
all, and if you believe it is, you’re already doomed.

smbclient

Allows MPD to access files on SMB/CIFS servers (e.g. Samba
or Microsoft Windows). All URIs with the smb:// scheme are
used. Example:

mpc add smb://servername/sharename/filename.ogg
mpc add smb://username:password@servername/sharename/filename.ogg

qobuz

Play songs from the commercial streaming service Qobuz. It plays URLs
in the form qobuz://track/ID, e.g.:

mpc add qobuz://track/23601296

	Setting

	Description

	app_id ID

	The Qobuz application id.

	app_secret SECRET

	The Qobuz application secret.

	username USERNAME

	The Qobuz user name.

	password PASSWORD

	The Qobuz password.

	format_id N

	The Qobuz format identifier [https://github.com/Qobuz/api-documentation/blob/master/endpoints/track/getFileUrl.md#parameters], i.e. a number which chooses the format and quality to be requested from Qobuz. The default is “5” (320 kbit/s MP3).

Decoder plugins

adplug

Decodes AdLib files using libadplug.

	Setting

	Description

	sample_rate

	The sample rate that shall be synthesized by the plugin. Defaults to 48000.

audiofile

Decodes WAV and AIFF files using libaudiofile.

faad

Decodes AAC files using libfaad.

ffmpeg

Decodes various codecs using FFmpeg.

	Setting

	Description

	analyzeduration VALUE

	Sets the FFmpeg muxer option analyzeduration, which specifies how many microseconds are analyzed to probe the input. The FFmpeg formats documentation [https://ffmpeg.org/ffmpeg-formats.html] has more information.

	probesize VALUE

	Sets the FFmpeg muxer option probesize, which specifies probing size in bytes, i.e. the size of the data to analyze to get stream information. The FFmpeg formats documentation [https://ffmpeg.org/ffmpeg-formats.html] has more information.

flac

Decodes FLAC files using libFLAC.

dsdiff

Decodes DSDIFF (Direct Stream Digital Interchange File Format [http://www.sonicstudio.com/pdf/dsd/DSDIFF_1.5_Spec.pdf]) files
(*.dff). These contain DSD instead of PCM.

	Setting

	Description

	lsbitfirst yes|no

	Decode the least significant bit first. Default is no.

dsf

Decodes DSF
(<https://dsd-guide.com/sites/default/files/white-papers/DSFFileFormatSpec_E.pdf>)
files (*.dsf). These contain DSD instead of PCM.

fluidsynth

MIDI decoder based on FluidSynth [http://www.fluidsynth.org/].

	Setting

	Description

	sample_rate

	The sample rate that shall be synthesized by the plugin. Defaults to 48000.

	soundfont

	The absolute path of the soundfont file. Defaults to /usr/share/sounds/sf2/FluidR3_GM.sf2.

gme

Video game music file emulator based on game-music-emu [https://bitbucket.org/mpyne/game-music-emu/wiki/Home].

	Setting

	Description

	accuracy yes|no

	Enable more accurate sound emulation.

	default_fade

	The default fade-out time, in seconds. Used by songs that don’t specify their own fade-out time.

mad

Decodes MP3 files using libmad [http://www.underbit.com/products/mad/].

mikmod

Module player based on MikMod [http://mikmod.sourceforge.net/].

	Setting

	Description

	loop yes|no

	Allow backward loops in modules. Default is no.

	sample_rate

	Sets the sample rate generated by libmikmod. Default is 44100.

modplug

Module player based on MODPlug.

	Setting

	Description

	resampling_mode nearest|linear|spline|fir

	Sets the resampling mode. “nearest” disables interpolation (good for chiptunes). “linear” makes modplug use linear interpolation (fast, good quality). “spline” makes modplug use cubic spline interpolation (high quality). “fir” makes modplug use 8-tap fir filter (extremely high quality). Defaults to “fir”.

	loop_count

	Number of times to loop the module if it uses backward loops. Default is 0 which prevents looping. -1 loops forever.

openmpt

Module player based on libopenmpt [https://lib.openmpt.org].

	Setting

	Description

	repeat_count

	Set how many times the module repeats. -1: repeat forever. 0: play once, repeat zero times (the default). n>0: play once and repeat n times after that.

	stereo_separation

	Sets the stereo separation. The supported value range is [0,200]. Defaults to 100.

	interpolation_filter 0|1|2|4|8

	Sets the interpolation filter. 0: internal default. 1: no interpolation (zero order hold). 2: linear interpolation. 4: cubic interpolation. 8: windowed sinc with 8 taps. Defaults to 0.

	override_mptm_interp_filter yes|no

	If interpolation_filter has been changed, setting this to yes will force all MPTM modules to use that interpolation filter. If set to no, MPTM modules will play with their own interpolation filter regardless of the value of interpolation_filter. Defaults to no.

	volume_ramping

	Sets the amount of volume ramping done by the libopenmpt mixer. The default value is -1, which indicates a recommended default value. The meaningful value range is [-1..10]. A value of 0 completely disables volume ramping. This might cause clicks in sound output. Higher values imply slower/softer volume ramps.

	sync_samples yes|no

	Syncs sample playback when seeking. Defaults to yes.

	at_end fadeout|stop

	Chooses the behaviour when the end of song is reached. “fadeout”: Fades the module out for a short while. “stop”: will immediately stop playing and MPD will play next track.

	emulate_amiga yes|no

	Enables the Amiga resampler for Amiga modules. This emulates the sound characteristics of the Paula chip and overrides the selected interpolation filter. Non-Amiga module formats are not affected by this setting. Defaults to yes.

	emulate_amiga_type

	Configures the filter type to use for the Amiga resampler. Supported values are: “auto”: Filter type is chosen by the library and might change. This is the default. “a500”: Amiga A500 filter. “a1200”: Amiga A1200 filter. “unfiltered”: BLEP synthesis without model-specific filters. The LED filter is ignored by this setting. This filter mode is considered to be experimental and might change in the future. Defaults to “auto”. Requires libopenmpt 0.5 or higher.

mpcdec

Decodes Musepack files using libmpcdec [http://www.musepack.net/].

mpg123

Decodes MP3 files using libmpg123 [http://www.mpg123.de/]. Currently, this
decoder does not support streams (e.g. archived files, remote files over HTTP,
…), only regular local files.

opus

Decodes Opus files using libopus [http://www.opus-codec.org/].

pcm

Reads raw PCM samples. It understands the “audio/L16” MIME type with parameters “rate” and “channels” according to RFC 2586. It also understands the MPD-specific MIME type “audio/x-mpd-float”.

sidplay

C64 SID decoder based on libsidplayfp [https://sourceforge.net/projects/sidplay-residfp/] or libsidplay2 [https://sourceforge.net/projects/sidplay2/].

	Setting

	Description

	songlength_database PATH

	Location of your songlengths file, as distributed with the HVSC. The sidplay plugin checks this for matching MD5 fingerprints. See http://www.hvsc.c64.org/download/C64Music/DOCUMENTS/Songlengths.faq. New songlength format support requires libsidplayfp 2.0 or later.

	default_songlength SECONDS

	This is the default playing time in seconds for songs not in the songlength database, or in case you’re not using a database. A value of 0 means play indefinitely.

	default_genre GENRE

	Optional default genre for SID songs.

	filter yes|no

	Turns the SID filter emulation on or off.

	kernal

	Only libsidplayfp. Roms are not embedded in libsidplayfp - please note https://sourceforge.net/p/sidplay-residfp/news/2013/01/released-libsidplayfp-100beta1/ But some SID tunes require rom images to play. Make C64 rom dumps from your own vintage gear or use rom files from Frodo or VICE emulation software tarballs. Absolute path to kernal rom image file.

	basic

	Only libsidplayfp. Absolute path to basic rom image file.

sndfile

Decodes WAV and AIFF files using libsndfile [http://www.mega-nerd.com/libsndfile/].

vorbis

Decodes Ogg-Vorbis files using libvorbis [http://www.xiph.org/ogg/vorbis/].

wavpack

Decodes WavPack files using libwavpack [http://www.wavpack.com/].

wildmidi

MIDI decoder based on libwildmidi [http://www.mindwerks.net/projects/wildmidi/].

	Setting

	Description

	config_file

	The absolute path of the timidity config file. Defaults to /etc/timidity/timidity.cfg.

Encoder plugins

flac

Encodes into FLAC [https://xiph.org/flac/] (lossless).

	Setting

	Description

	compression

	Sets the libFLAC compression level. The levels range from 0 (fastest, least compression) to 8 (slowest, most compression).

	oggflac yes|no

	Configures if the stream should be Ogg FLAC versus native FLAC. Defaults to “no” (use native FLAC).

	oggchaining yes|no

	Configures if the stream should use Ogg Chaining for in-stream metadata. Defaults to “no”. Setting this to “yes” also enables Ogg FLAC.

lame

Encodes into MP3 using the LAME [http://lame.sourceforge.net/] library.

	Setting

	Description

	quality

	Sets the quality for VBR. 0 is the highest quality, 9 is the lowest quality. Cannot be used with bitrate.

	bitrate

	Sets the bit rate in kilobit per second. Cannot be used with quality.

null

Does not encode anything, passes the input PCM data as-is.

shine

Encodes into MP3 using the Shine [https://github.com/savonet/shine] library.

	Setting

	Description

	bitrate

	Sets the bit rate in kilobit per second.

twolame

Encodes into MP2 using the TwoLAME [http://www.twolame.org/] library.

	Setting

	Description

	quality

	Sets the quality for VBR. 0 is the highest quality, 9 is the lowest quality. Cannot be used with bitrate.

	bitrate

	Sets the bit rate in kilobit per second. Cannot be used with quality.

opus

Encodes into Ogg Opus [http://www.opus-codec.org/].

	Setting

	Description

	bitrate

	Sets the data rate in bits per second. The special value “auto” lets libopus choose a rate (which is the default), and “max” uses the maximum possible data rate.

	complexity

	Sets the Opus complexity [https://wiki.xiph.org/OpusFAQ#What_is_the_complexity_of_Opus.3F].

	signal

	Sets the Opus signal type. Valid values are “auto” (the default), “voice” and “music”.

	vbr yes|no|constrained

	Sets the vbr mode. Setting to “yes” (default) enables variable bitrate, “no” forces constant bitrate and frame sizes, “constrained” uses constant bitrate analogous to CBR in AAC and MP3.

	packet_loss

	Sets the expected packet loss percentage. This value can be increased from the default “0” for a more redundant stream at the expense of quality.

	opustags yes|no

	Configures how metadata is interleaved into the stream. If set to yes, then metadata is inserted using ogg stream chaining, as specified in RFC 7845 [https://datatracker.ietf.org/doc/html/rfc7845.html]. If set to no (the default), then ogg stream chaining is avoided and other output-dependent method is used, if available.

vorbis

Encodes into Ogg Vorbis [http://www.vorbis.com/].

	Setting

	Description

	quality

	Sets the quality for VBR. -1 is the lowest quality, 10 is the highest quality. Defaults to 3. Cannot be used with bitrate.

	bitrate

	Sets the bit rate in kilobit per second. Cannot be used with quality.

wave

Encodes into WAV (lossless).

Resampler plugins

The resampler can be configured in a block named resampler, for example:

resampler {
 plugin "soxr"
 quality "very high"
}

The following table lists the resampler options valid for all plugins:

	Name

	Description

	plugin

	The name of the plugin.

internal

A resampler built into MPD. Its quality is very poor, but its CPU usage is low. This is the fallback if MPD was compiled without an external resampler.

libsamplerate

A resampler using libsamplerate [http://www.mega-nerd.com/SRC/] a.k.a. Secret Rabbit Code (SRC).

	Name

	Description

	type

	The interpolator type. Defaults to 2. See below for a list of known types.

The following converter types are provided by libsamplerate:

	Type

	Description

	“Best Sinc Interpolator” or “0”

	Band limited sinc interpolation, best quality, 97dB SNR, 96% BW.

	“Medium Sinc Interpolator” or “1”

	Band limited sinc interpolation, medium quality, 97dB SNR, 90% BW.

	“Fastest Sinc Interpolator” or “2”

	Band limited sinc interpolation, fastest, 97dB SNR, 80% BW.

	“ZOH Sinc Interpolator” or “3”

	Zero order hold interpolator, very fast, very poor quality with audible distortions.

	“Linear Interpolator” or “4”

	Linear interpolator, very fast, poor quality.

soxr

A resampler using libsoxr [http://sourceforge.net/projects/soxr/], the SoX Resampler library

	Name

	Description

	quality

	The libsoxr quality setting. Valid values see below.

	threads

	The number of libsoxr threads. “0” means “automatic”. The default is “1” which disables multi-threading.

Valid quality values for libsoxr:

	“very high”

	“high” (the default)

	“medium”

	“low”

	“quick”

	“custom”

If the quality is set to custom also the following settings are available:

	Name

	Description

	precision

	The precision in bits. Valid values 16,20,24,28 and 32 bits.

	phase_response

	Between the 0-100, Where 0=MINIMUM_PHASE and 50=LINEAR_PHASE.

	passband_end

	The % of source bandwidth where to start filtering. Typical between the 90-99.7.

	stopband_begin

	The % of the source bandwidth Where the anti aliasing filter start. Value 100+.

	attenuation

	Reduction in dB’s to prevent clipping from the resampling process.

	flags

	Bitmask with additional option see soxr documentation for specific flags.

Output plugins

alsa

The Advanced Linux Sound Architecture (ALSA) [http://www.alsa-project.org/] plugin uses libasound. It is recommended if you are using Linux.

	Setting

	Description

	device NAME

	Sets the device which should be used. This can be any valid ALSA device name. The default value is “default”, which makes libasound choose a device. It is recommended to use a “hw” or “plughw” device, because otherwise, libasound automatically enables “dmix”, which has major disadvantages (fixed sample rate, poor resampler, …).

	buffer_time US

	Sets the device’s buffer time in microseconds. Don’t change unless you know what you’re doing.

	period_time US

	Sets the device’s period time in microseconds. Don’t change unless you really know what you’re doing.

	auto_resample yes|no

	If set to no, then libasound will not attempt to resample, handing the responsibility over to MPD. It is recommended to let MPD resample (with libsamplerate), because ALSA is quite poor at doing so.

	auto_channels yes|no

	If set to no, then libasound will not attempt to convert between different channel numbers.

	auto_format yes|no

	If set to no, then libasound will not attempt to convert between different sample formats (16 bit, 24 bit, floating point, …).

	dop yes|no

	If set to yes, then DSD over PCM according to the DoP standard [http://dsd-guide.com/dop-open-standard] is enabled. This wraps DSD samples in fake 24 bit PCM, and is understood by some DSD capable products, but may be harmful to other hardware. Therefore, the default is no and you can enable the option at your own risk.

	stop_dsd_silence yes|no

	If enabled, silence is played before manually stopping playback
(“stop” or “pause”) in DSD mode (native DSD or DoP). This is a
workaround for some DACs which emit noise when stopping DSD
playback.

	thesycon_dsd_workaround yes|no

	If enabled, enables a workaround for a bug in Thesycon USB
audio receivers. On these devices, playing DSD512 or PCM
causes all subsequent attempts to play other DSD rates to fail,
which can be fixed by briefly playing PCM at 44.1 kHz.

	allowed_formats F1 F2 …

	Specifies a list of allowed audio formats, separated by a space. All items may contain asterisks as a wild card, and may be followed by “=dop” to enable DoP (DSD over PCM) for this particular format. The first matching format is used, and if none matches, MPD chooses the best fallback of this list.

Example: “96000:16:* 192000:24:* dsd64:=dop *:dsd:”.

The according hardware mixer plugin understands the following settings:

	Setting

	Description

	mixer_device DEVICE

	Sets the ALSA mixer device name, defaulting to default which lets ALSA pick a value.

	mixer_control NAME

	Choose a mixer control, defaulting to PCM. Type amixer scontrols to get a list of available mixer controls.

	mixer_index NUMBER

	Choose a mixer control index. This is necessary if there is more than one control with the same name. Defaults to 0 (the first one).

The following attributes can be configured at runtime using the outputset command:

	Setting

	Description

	dop 1|0

	Allows changing the dop configuration setting at runtime. This takes effect the next time the output is opened.

	allowed_formats F1 F2 …

	Allows changing the allowed_formats configuration setting at runtime. This takes effect the next time the output is opened.

ao

The ao plugin uses the portable libao [https://www.xiph.org/ao/] library. Use only if there is no native plugin for your operating system.

	Setting

	Description

	driver D

	The libao driver to use for audio output. Possible values depend on what libao drivers are available. See http://www.xiph.org/ao/doc/drivers.html for information on some commonly used drivers. Typical values for Linux include “oss” and “alsa09”. The default is “default”, which causes libao to select an appropriate plugin.

	options O

	Options to pass to the selected libao driver.

	write_size O

	This specifies how many bytes to write to the audio device at once. This parameter is to work around a bug in older versions of libao on sound cards with very small buffers. The default is 1024.

sndio

The sndio plugin uses the sndio [http://www.sndio.org/] library. It should normally be used on OpenBSD.

	Setting

	Description

	device NAME

	The audio output device libsndio will attempt to use. The default is “default” which causes libsndio to select the first output device.

	buffer_time MS

	Set the application buffer time in milliseconds.

fifo

The fifo plugin writes raw PCM data to a FIFO (First In, First Out) file. The data can be read by another program.

	Setting

	Description

	path P

	This specifies the path of the FIFO to write to. Must be an absolute path. If the path does not exist, it will be created when MPD is started, and removed when MPD is stopped. The FIFO will be created with the same user and group as MPD is running as. Default permissions can be modified by using the builtin shell command umask. If a FIFO already exists at the specified path it will be reused, and will not be removed when MPD is stopped. You can use the “mkfifo” command to create this, and then you may modify the permissions to your liking.

jack

The jack plugin connects to a JACK server [http://jackaudio.org/].

On Windows, this plugin loads libjack64.dll at runtime. This
means you need to download and install the JACK windows build [https://jackaudio.org/downloads/].

	Setting

	Description

	client_name NAME

	The name of the JACK client. Defaults to “Music Player Daemon”.

	server_name NAME

	Optional name of the JACK server.

	autostart yes|no

	If set to yes, then libjack will automatically launch the JACK daemon. Disabled by default.

	source_ports A,B

	The names of the JACK source ports to be created. By default, the ports “left” and “right” are created. To use more ports, you have to tweak this option.

	destination_ports A,B

	The names of the JACK destination ports to connect to.

	auto_destination_ports yes|no

	If set to yes, then MPD will automatically create connections between the send ports of
MPD and receive ports of the first sound card; if set to no, then MPD will only create
connections to the contents of destination_ports if it is set. Enabled by default.

	ringbuffer_size NBYTES

	Sets the size of the ring buffer for each channel. Do not configure this value unless you know what you’re doing.

httpd

The httpd plugin creates a HTTP server, similar to ShoutCast [http://www.shoutcast.com/] / IceCast [http://icecast.org/]. HTTP streaming clients like mplayer, VLC, and mpv can connect to it.

It is highly recommended to configure a fixed format, because a stream cannot switch its audio format on-the-fly when the song changes.

	Setting

	Description

	port P

	Binds the HTTP server to the specified port.

	bind_to_address ADDR

	Binds the HTTP server to the specified address (IPv4, IPv6 or local socket). Multiple addresses in parallel are not supported.

	dscp_class CLASS

	Sets a DSCP (Differentiated Services Code Point [https://en.wikipedia.org/wiki/Differentiated_services])
class for outgoing traffic. This can either be a name
(CS*, LE, AF*, EF) or numeric (decimal or
hexadecimal). A reasonable choice for this setting is CS3
(“broadcast video”).

	encoder NAME

	Chooses an encoder plugin. A list of encoder plugins can be found in the encoder plugin reference Encoder plugins.

	max_clients MC

	Sets a limit, number of concurrent clients. When set to 0 no limit will apply.

null

The null plugin does nothing. It discards everything sent to it.

	Setting

	Description

	sync yes|no

	If set to no, then the timer is disabled - the device will accept PCM chunks at arbitrary rate (useful for benchmarking). The default behaviour is to play in real time.

oss

The “Open Sound System” plugin is supported on most Unix platforms.

On Linux, OSS has been superseded by ALSA. Use the ALSA output plugin alsa instead of this one on Linux.

	Setting

	Description

	device PATH

	Sets the path of the PCM device. If not specified, then MPD will attempt to open /dev/sound/dsp and /dev/dsp.

	dop yes|no

	If set to yes, then DSD over PCM according to the DoP standard [http://dsd-guide.com/dop-open-standard] is enabled. This wraps DSD samples in fake 24 bit PCM, and is understood by some DSD capable products, but may be harmful to other hardware. Therefore, the default is no and you can enable the option at your own risk.

The according hardware mixer plugin understands the following settings:

	Setting

	Description

	mixer_device DEVICE

	Sets the OSS mixer device path, defaulting to /dev/mixer.

	mixer_control NAME

	Choose a mixer control, defaulting to PCM.

openal

The “OpenAL” plugin uses libopenal [http://kcat.strangesoft.net/openal.html]. It is supported on many platforms. Use only if there is no native plugin for your operating system.

	Setting

	Description

	device NAME

	Sets the device which should be used. This can be any valid OpenAL device name. If not specified, then libopenal will choose a default device.

osx

The “Mac OS X” plugin uses Apple’s CoreAudio API.

	Setting

	Description

	device NAME

	Sets the device which should be used. Uses device names as listed in the “Audio Devices” window of “Audio MIDI Setup”.

	hog_device yes|no

	Hog the device. This means that it takes exclusive control of the audio output device it is playing through, and no other program can access it.

	dop yes|no

	If set to yes, then DSD over PCM according to the DoP standard [http://dsd-guide.com/dop-open-standard] is enabled. This wraps DSD samples in fake 24 bit PCM, and is understood by some DSD capable products, but may be harmful to other hardware. Therefore, the default is no and you can enable the option at your own risk. Under macOS you must make sure to select a physical mode on the output device which supports at least 24 bits per channel as the Mac OS X plugin only changes the sample rate.

	channel_map SOURCE,SOURCE,…

	Specifies a channel map. If your audio device has more than two outputs this allows you to route audio to auxillary outputs. For predictable results you should also specify a “format” with a fixed number of channels, e.g. “::2”. The number of items in the channel map must match the number of output channels of your output device. Each list entry specifies the source for that output channel; use “-1” to silence an output. For example, if you have a four-channel output device and you wish to send stereo sound (format “::2”) to outputs 3 and 4 while leaving outputs 1 and 2 silent then set the channel map to “-1,-1,0,1”. In this example ‘0’ and ‘1’ denote the left and right channel respectively.

The channel map may not refer to outputs that do not exist according to the format. If the format is “::1” (mono) and you have a four-channel sound card then “-1,-1,0,0” (dual mono output on the second pair of sound card outputs) is a valid channel map but “-1,-1,0,1” is not because the second channel (‘1’) does not exist when the output is mono.

pipe

The pipe plugin starts a program and writes raw PCM data into its standard input.

	Setting

	Description

	command CMD

	This command is invoked with the shell.

pipewire

Connect to a PipeWire [https://pipewire.org/] server. Requires
libpipewire.

	Setting

	Description

	target NAME

	Link to the given target. If not specified, let the PipeWire
manager select a target. To get a list of available targets,
type pw-cli dump short Node

	remote NAME

	The name of the remote to connect to. The default is
pipewire-0.

	dsd yes|no

	Enable DSD playback. This requires PipeWire 0.38.

pulse

The pulse plugin connects to a PulseAudio [http://www.freedesktop.org/wiki/Software/PulseAudio/] server. Requires libpulse.

	Setting

	Description

	server HOSTNAME

	Sets the host name of the PulseAudio server. By default, MPD connects to the local PulseAudio server.

	sink NAME

	Specifies the name of the PulseAudio sink MPD should play on.

	media_role ROLE

	Specifies a custom media role that MPD reports to PulseAudio. Default is “music”. (optional).

	scale_volume FACTOR

	Specifies a linear scaling coefficient (ranging from 0.5 to 5.0) to apply when adjusting volume through MPD. For example, chosing a factor equal to "0.7" means that setting the volume to 100 in MPD will set the PulseAudio volume to 70%, and a factor equal to "3.5" means that volume 100 in MPD corresponds to a 350% PulseAudio volume.

recorder

The recorder plugin writes the audio played by MPD to a file. This may be useful for recording radio streams.

	Setting

	Description

	path P

	Write to this file.

	format_path P

	An alternative to path which provides a format string referring to tag values. The special tag iso8601 emits the current date and time in ISO8601 [https://en.wikipedia.org/wiki/ISO_8601] format (UTC). Every time a new song starts or a new tag gets received from a radio station, a new file is opened. If the format does not render a file name, nothing is recorded. A tag name enclosed in percent signs (‘%’) is replaced with the tag value. Example: -/.mpd/recorder/%artist% - %title%.ogg. Square brackets can be used to group a substring. If none of the tags referred in the group can be found, the whole group is omitted. Example: [-/.mpd/recorder/[%artist% -]%title%.ogg] (this omits the dash when no artist tag exists; if title also doesn’t exist, no file is written). The operators “|” (logical “or”) and “&” (logical “and”) can be used to select portions of the format string depending on the existing tag values. Example: -/.mpd/recorder/[%title%|%name%].ogg (use the “name” tag if no title exists)

	encoder NAME

	Chooses an encoder plugin. A list of encoder plugins can be found in the encoder plugin reference Encoder plugins.

shout

The shout plugin connects to a ShoutCast or IceCast server using libshout. It forwards tags to this server.

You must set a format.

	Setting

	Description

	host HOSTNAME

	Sets the host name of the ShoutCast [http://www.shoutcast.com/] / IceCast [http://icecast.org/] server.

	port PORTNUMBER

	Connect to this port number on the specified host.

	protocol icecast2|icecast1|shoutcast

	Specifies the protocol that wil be used to connect to the server. The default is “icecast2”.

	tls disabled|auto|auto_no_plain|rfc2818|rfc2817

	Specifies what kind of TLS to use. The default is “disabled” (no TLS).

	mount URI

	Mounts the MPD stream in the specified URI.

	user USERNAME

	Sets the user name for submitting the stream to the server. Default is “source”.

	password PWD

	Sets the password for submitting the stream to the server.

	name NAME

	Sets the name of the stream.

	genre GENRE

	Sets the genre of the stream (optional).

	description DESCRIPTION

	Sets a short description of the stream (optional).

	url URL

	Sets a URL associated with the stream (optional).

	public yes|no

	Specifies whether the stream should be “public”. Default is no.

	encoder PLUGIN

	Chooses an encoder plugin. Default is vorbis vorbis. A list of encoder plugins can be found in the encoder plugin reference Encoder plugins.

sles

Plugin using the OpenSL ES [https://www.khronos.org/opensles/]
audio API. Its primary use is local playback on Android, where
ALSA is not available. It supports 16 bit and
floating point samples.

snapcast

Snapcast is a multiroom client-server audio player. This plugin
allows MPD to act as a Snapcast [https://github.com/badaix/snapcast] server. Snapcast clients
connect to it and receive audio data from MPD.

You must set a format.

	Setting

	Description

	port P

	Binds the Snapcast server to the specified port. The default
port is 1704.

	bind_to_address ADDR

	Binds the Snapcast server to the specified address. Multiple
addresses in parallel are not supported. The default is to
bind on all addresses on port 1704.

	zeroconf yes|no

	Publish the Snapcast server as service type _snapcast._tcp
via Zeroconf (Avahi or Bonjour). Default is yes.

solaris

The “Solaris” plugin runs only on SUN Solaris, and plays via /dev/audio.

	Setting

	Description

	device PATH

	Sets the path of the audio device, defaults to /dev/audio.

wasapi

The Windows Audio Session API [https://docs.microsoft.com/en-us/windows/win32/coreaudio/wasapi] plugin uses WASAPI, which is supported started from Windows Vista. It is recommended if you are using Windows.

	Setting

	Description

	device NAME

	Sets the device which should be used. This can be any valid audio device name, or index number. The default value is “”, which makes WASAPI choose the default output device.

	enumerate yes|no

	Enumerate all devices in log while playing started. Useful for device configuration. The default value is “no”.

	exclusive yes|no

	Exclusive mode blocks all other audio source, and get best audio quality without resampling. Stopping playing release the exclusive control of the output device. The default value is “no”.

	dop yes|no

	Enable DSD over PCM. Require exclusive mode. The default value is “no”.

Filter plugins

ffmpeg

Configures a FFmpeg filter graph.

This plugin requires building with libavfilter (FFmpeg).

	Setting

	Description

	graph “…”

	Specifies the libavfilter graph; read the FFmpeg
documentation [https://ffmpeg.org/ffmpeg-filters.html#Filtergraph-syntax-1]
for details

hdcd

Decode HDCD [https://en.wikipedia.org/wiki/High_Definition_Compatible_Digital].

This plugin requires building with libavfilter (FFmpeg).

normalize

Normalize the volume during playback (at the expense of quality).

null

A no-op filter. Audio data is returned as-is.

route

Reroute channels.

	Setting

	Description

	routes “0>0, 1>1, …”

	Specifies the channel mapping.

Playlist plugins

asx

Reads .asx playlist files.

cue

Reads .cue files.

embcue

Reads CUE sheets from the CUESHEET tag of song files.

m3u

Reads .m3u playlist files.

extm3u

Reads extended .m3u playlist files.

flac

Reads the cuesheet metablock from a FLAC file.

pls

Reads .pls playlist files.

rss

Reads music links from .rss files.

soundcloud

Download playlist from SoundCloud. It accepts URIs starting with soundcloud://.

	Setting

	Description

	apikey KEY

	An API key to access the SoundCloud servers.

xspf

Reads XSPF playlist files.

Archive plugins

bz2

Allows to load single bzip2 compressed files using libbz2 [https://www.sourceware.org/bzip2/]. Does not support seeking.

zzip

Allows to load music files from ZIP archives using zziplib [http://zziplib.sourceforge.net/].

iso

Allows to load music files from ISO 9660 images using libcdio [https://www.gnu.org/software/libcdio/].

Footnotes

	1(1,2,3,4,5,6,7)

	Since MPD 0.24

Developer’s Manual

Introduction

This is a guide for those who wish to hack on the MPD source code. MPD is an open project, and we are always happy about contributions. So far, more than 150 people have contributed patches. This document is work in progress. Most of it may be incomplete yet. Please help!

Code Style

	indent with tabs (width 8)

	don’t write CPP when you can write C++: use inline functions and constexpr instead of macros

	comment your code, document your APIs

	the code should be C++20 compliant, and must compile with GCC 10 and clang 11

	all code must be exception-safe

	classes and functions names use CamelCase; variables are lower-case with words separated by underscore

Some example code:

Foo(const char *abc, int xyz)
{
 if (abc == nullptr) {
 LogWarning("Foo happened!");
 return -1;
 }

 return xyz;
}

Error handling

If an error occurs, throw a C++ exception, preferably derived from
std::runtime_error. The function’s API documentation should
mention that. If a function cannot throw exceptions, add
noexcept to its prototype.

Some parts of MPD use callbacks to report completion; the handler
classes usually have an “error” callback which receives a
std::exception_ptr
(e.g. BufferedSocket::OnSocketError()). Wrapping errors in
std::exception_ptr allows propagating details about the error
across thread boundaries to the entity which is interested in handling
it (e.g. giving the MPD client details about an I/O error caught by
the decoder thread).

Out-of-memory errors (i.e. std::bad_alloc) do not need to be
handled. Some operating systems such as Linux do not report
out-of-memory to userspace, and instead kill a process to recover.
Even if we know we are out of memory, there is little we can do except
for aborting the process quickly. Any other attempts to give back
memory may cause page faults on the way which make the situation
worse.

Error conditions which are caused by a bug do not need to be handled
at runtime; instead, use assert() to detect them in debug
builds.

git Branches

There are two active branches in the git repository:

	the “unstable” branch called master where new features are
merged. This will become the next major release eventually.

	the “stable” branch (currently called v0.22.x) where only bug
fixes are merged.

Once MPD 0.23 is released, a new branch called v0.23.x
will be created for 0.23 bug-fix releases; after that, v0.22.x
will eventually cease to be maintained.

After bug fixes have been added to the “stable” branch, it will be
merged into master. This ensures that all known bugs are fixed in
all active branches.

Hacking The Source

MPD sources are managed in a git repository on
Github [https://github.com/MusicPlayerDaemon/].

Always write your code against the latest git:

git clone git://github.com/MusicPlayerDaemon/MPD

If you already have a clone, update it:

git pull --rebase git://github.com/MusicPlayerDaemon/MPD master

You can do without --rebase, but we recommend that you rebase
your repository on the “master” repository all the time.

Configure with the option --werror. Enable as many plugins as
possible, to be sure that you don’t break any disabled code.

Don’t mix several changes in one single patch. Create a separate patch for every change. Tools like stgit help you with that. This way, we can review your patches more easily, and we can pick the patches we like most first.

Basic stgit usage

stgit allows you to create a set of patches and refine all of them: you can go back to any patch at any time, and re-edit it (both the code and the commit message). You can reorder patches and insert new patches at any position. It encourages creating separate patches for tiny changes.

stgit needs to be initialized on a git repository:

stg init

Before you edit the code, create a patch:

stg new my-patch-name

stgit now asks you for the commit message.

Now edit the code. Once you’re finished, you have to “refresh” the patch, i.e. your edits are incorporated into the patch you have created:

stg refresh

You may now continue editing the same patch, and refresh it as often as you like. Create more patches, edit and refresh them.

To view the list of patches, type stg series. To go back to a specific patch, type stg goto my-patch-name; now you can re-edit it (don’t forget stg refresh when you’re finished with that patch).

When the whole patch series is finished, convert stgit patches to git commits:

stg commit

Submitting Patches

Submit pull requests on GitHub:
https://github.com/MusicPlayerDaemon/MPD/pulls

Client Developer’s Manual

Introduction

MPD is a music player without a user interface. The user interface
will be provided by independent clients, which connect to MPD over
socket connections (TCP or local sockets).

This chapter describes how to develop a client.

Before you develop a new client, consider joining an existing client
project. There are many clients, but few are mature; we need fewer,
but better clients.

Client Libraries

There are many libraries which help with connecting to MPD. If you
develop a MPD client, use a library instead of reinventing the wheel.
The MPD website has a list of libraries: https://www.musicpd.org/libs/

Connecting to MPD

Do not hard-code your client to connect to localhost:6600.
Instead, use the defaults of the client library. For example, with
libmpdclient, don’t do:

c = mpd_connection_new("localhost", 6600, 30000);

Instead, do:

c = mpd_connection_new(NULL, 0, 0);

This way, the library can choose the best defaults, maybe derived from
environment variables, so all MPD clients use the same settings.

If you need to reimplement those defaults (or if you are developing a
client library), this is a good set of addresses to attempt to connect
to:

	if the environment variable MPD_HOST is set:
$MPD_HOST:$MPD_PORT (MPD_PORT defaulting to 6600)

	if the environment variable XDG_RUNTIME_DIR is set:
$XDG_RUNTIME_DIR/mpd/socket

	/run/mpd/socket

	localhost:$MPD_PORT (MPD_PORT defaulting to 6600)

Environment Variables

The following environment variables should be obeyed by all clients
(preferably by the client library):

	MPD_HOST: the host (or local socket path) to connect to;
on Linux, this may start with a @ to connect to an abstract
socket. To use a password with MPD, set MPD_HOST to
password@host (then abstract socket requires double @:
password@@socket).

	MPD_PORT: the port number; defaults to 6600.

	MPD_TIMEOUT: timeout for connecting to MPD and for waiting
for MPD’s response in seconds. A good default is 30 seconds.

Protocol

General protocol syntax

Protocol overview

The MPD command protocol exchanges
line-based text records between client and server over TCP.
Once the client is connected to the server, they conduct a
conversation until the client closes the connection. The
conversation flow is always initiated by the client.

All data between the client and the server is encoded in
UTF-8.

The client transmits a command sequence, terminated by the
newline character \n. The server will
respond with one or more lines, the last of which will be a
completion code.

When the client connects to the server, the server will answer
with the following line:

OK MPD version

where version is a version identifier such as
0.12.2. This version identifier is the version of the protocol
spoken, not the real version of the daemon. (There is no way to
retrieve this real version identifier from the connection.)

Requests

COMMAND [ARG...]

If arguments contain spaces, they should be surrounded by double
quotation marks.

Argument strings are separated from the command and any other
arguments by linear white-space (’ ‘ or ‘\t’).

Responses

A command returns OK on completion or
ACK some error on failure. These
denote the end of command execution.

Some commands return more data before the response ends with OK.
Each line is usually in the form NAME: VALUE. Example:

foo: bar
OK

Binary Responses

Some commands can return binary data. This is initiated by a line
containing binary: 1234 (followed as usual by a newline). After
that, the specified number of bytes of binary data follows, then a
newline, and finally the OK line.

If the object to be transmitted is large, the server may choose a
reasonable chunk size and transmit only a portion. The maximum chunk
size can be changed by clients with the binarylimit command.

Usually, the response also contains a size line which specifies
the total (uncropped) size, and the command usually has a way to
specify an offset into the object; this way, the client can copy the
whole file without blocking the connection for too long.

Example:

foo: bar
binary: 42
<42 bytes>
OK

Failure responses

The nature of the error can be gleaned from the information
that follows the ACK.
ACK lines are of the form:

ACK [error@command_listNum] {current_command} message_text

These responses are generated by a call to
commandError. They contain four separate
terms. Let’s look at each of them:

	error: numeric value of one
of the ACK_ERROR constants defined
in src/protocol/Ack.hxx.

	command_listNum: offset of the command that caused the error in
a Command List. An error will always cause a
command list to terminate at the command that causes the error.

	current_command: name of the command, in a Command List, that was executing when the error occurred.

	message_text:
some (hopefully) informative text that describes the
nature of the error.

An example might help. Consider the following sequence
sent from the client to the server:

command_list_begin
volume 86
play 10240
status
command_list_end

The server responds with:

ACK [50@1] {play} song doesn't exist: "10240"

This tells us that the play command, which was the second in the list
(the first or only command is numbered 0), failed with error 50. The
number 50 translates to ACK_ERROR_NO_EXIST – the song doesn’t
exist. This is reiterated by the message text which also tells us
which song doesn’t exist.

Command lists

To facilitate faster adding of files etc. you can pass a list
of commands all at once using a command list. The command
list begins with command_list_begin or
command_list_ok_begin and ends with
command_list_end.

It does not execute any commands until the list has ended. The
response is a concatentation of all individual responses.
On success for all commands,
OK is returned. If a command
fails, no more commands are executed and the appropriate
ACK error is returned. If
command_list_ok_begin is used,
list_OK is returned for each
successful command executed in the command list.

Ranges

Some commands (e.g. delete) allow specifying a
range in the form START:END (the END item is not included in
the range, similar to ranges in the Python programming language). If
END is omitted, then the maximum possible value is assumed.

Filters

All commands which search for songs (e.g. find
and searchadd) share a common filter
syntax:

find EXPRESSION

EXPRESSION is a string enclosed in parentheses which can be one
of:

	(TAG == 'VALUE'): match a tag value; if there are multiple
values of the given type, at least one must match.
(TAG != 'VALUE'): mismatch a tag value; if there are multiple
values of the given type, none of them must match.
The special tag any checks all
tag types.
AlbumArtist looks for
VALUE in AlbumArtist
and falls back to Artist tags if
AlbumArtist does not exist.
VALUE is what to find.
An empty value string means: match only if the given tag type does
not exist at all; this implies that negation with an empty value
checks for the existence of the given tag type.

	(TAG contains 'VALUE') checks if the given value is a substring
of the tag value.

	(TAG starts_with 'VALUE') checks if the tag value starts with the given value.

	(TAG =~ 'VALUE') and (TAG !~ 'VALUE') use a Perl-compatible
regular expression instead of doing a simple string comparison.
(This feature is only available if MPD was compiled with
libpcre)

	(file == 'VALUE'): match the full song URI
(relative to the music directory).

	(base 'VALUE'): restrict the search to
songs in the given directory (relative to the music
directory).

	(modified-since 'VALUE'): compares the
file’s time stamp with the given value (ISO 8601 or UNIX
time stamp).

	(AudioFormat == 'SAMPLERATE:BITS:CHANNELS'): compares the audio
format with the given value. See Global Audio Format for a
detailed explanation.

	(AudioFormat =~ 'SAMPLERATE:BITS:CHANNELS'):
matches the audio format with the given mask (i.e. one
or more attributes may be *).

	(prio >= 42):
compares the priority of queued songs.

	(!EXPRESSION): negate an expression. Note that each expression
must be enclosed in parentheses, e.g. (!(artist == 'VALUE'))
(which is equivalent to (artist != 'VALUE'))

	(EXPRESSION1 AND EXPRESSION2 ...): combine two or
more expressions with logical “and”. Note that each expression must
be enclosed in parentheses, e.g. ((artist == 'FOO') AND
(album == 'BAR'))

The find commands are case sensitive, while
search and related commands ignore case. The latter also
applies Unicode normalization [https://unicode.org/reports/tr15/]
and converts all punctuation to ASCII equivalents
if MPD was compiled with ICU [https://icu.unicode.org/] support.

Prior to MPD 0.21, the syntax looked like this:

find TYPE VALUE

Escaping String Values

String values are quoted with single or double quotes, and special
characters within those values must be escaped with the backslash
(\). Keep in mind that the backslash is also the escape character
on the protocol level, which means you may need to use double
backslash.

Example expression which matches an artist named foo'bar":

(Artist == "foo\'bar\"")

At the protocol level, the command must look like this:

find "(Artist == \"foo\\'bar\\\"\")"

The double quotes enclosing the artist name must be escaped because
they are inside a double-quoted find parameter. The single quote
inside that artist name must be escaped with two backslashes; one to
escape the single quote, and another one because the backslash inside
the string inside the parameter needs to be escaped as well. The
double quote has three confusing backslashes: two to build one
backslash, and another one to escape the double quote on the protocol
level. Phew!

To reduce confusion, you should use a library such as libmpdclient [https://www.musicpd.org/libs/libmpdclient/] which escapes command
arguments for you.

Tags

The following tags are supported by MPD:

	artist: the artist name. Its meaning is not well-defined; see “composer” and “performer” for more specific tags.

	artistsort: same as artist, but for sorting. This usually omits prefixes such as “The”.

	album: the album name.

	albumsort: same as album, but for sorting.

	albumartist: on multi-artist albums, this is the artist name which shall be used for the whole album. The exact meaning of this tag is not well-defined.

	albumartistsort: same as albumartist, but for sorting.

	title: the song title.

	titlesort: same as title, but for sorting.

	track: the decimal track number within the album.

	name: a name for this song. This is not the song title. The exact meaning of this tag is not well-defined. It is often used by badly configured internet radio stations with broken tags to squeeze both the artist name and the song title in one tag.

	genre: the music genre.

	mood: the mood of the audio with a few keywords.

	date: the song’s release date. This is usually a 4-digit year.

	originaldate: the song’s original release date.

	composer: the artist who composed the song.

	composersort: same as composer, but for sorting.

	performer: the artist who performed the song.

	conductor: the conductor who conducted the song.

	work: “a work is a distinct intellectual or artistic creation,
which can be expressed in the form of one or more audio recordings” [https://musicbrainz.org/doc/Work]

	ensemble: the ensemble performing this song, e.g. “Wiener Philharmoniker”.

	movement: name of the movement, e.g. “Andante con moto”.

	movementnumber: movement number, e.g. “2” or “II”.

	location: location of the recording, e.g. “Royal Albert Hall”.

	grouping: “used if the sound belongs to a larger category of
sounds/music” (from the IDv2.4.0 TIT1 description [http://id3.org/id3v2.4.0-frames]).

	comment: a human-readable comment about this song. The exact meaning of this tag is not well-defined.

	disc: the decimal disc number in a multi-disc album.

	label: the name of the label or publisher.

	musicbrainz_artistid: the artist id in the MusicBrainz [https://picard.musicbrainz.org/docs/mappings/] database.

	musicbrainz_albumid: the album id in the MusicBrainz [https://picard.musicbrainz.org/docs/mappings/] database.

	musicbrainz_albumartistid: the album artist id in the MusicBrainz [https://picard.musicbrainz.org/docs/mappings/] database.

	musicbrainz_trackid: the track id in the MusicBrainz [https://picard.musicbrainz.org/docs/mappings/] database.

	musicbrainz_releasetrackid: the release track id in the MusicBrainz [https://picard.musicbrainz.org/docs/mappings/] database.

	musicbrainz_workid: the work id in the MusicBrainz [https://picard.musicbrainz.org/docs/mappings/] database.

There can be multiple values for some of these tags. For
example, MPD may return multiple
lines with a performer tag. A tag value is
a UTF-8 string.

Other Metadata

The response to lsinfo and similar commands
may contain song tags and other metadata, specifically:

	duration: the duration of the song in
seconds; may contain a fractional part.

	time: like duration,
but as integer value. This is deprecated and is only here
for compatibility with older clients. Do not use.

	Range: if this is a queue item referring only to a portion of
the song file, then this attribute contains the time range in the
form START-END or START- (open ended); both START and
END are time stamps within the song in seconds (may contain a
fractional part). Example: 60-120 plays only the second minute;
“180 skips the first three minutes.

	Format: the audio format of the song
(or an approximation to a format supported by MPD and the
decoder plugin being used). When playing this file, the
audio value in the status
response should be the same.

	Last-Modified: the time stamp of the
last modification of the underlying file in ISO 8601
format. Example:
“2008-09-28T20:04:57Z”

Recipes

Queuing

Often, users run MPD with random
enabled, but want to be able to insert songs “before” the rest of the
playlist. That is commonly called “queuing”.

MPD implements this by allowing the client to specify a
“priority” for each song in the playlist (commands priod and priodid). A higher
priority means that the song is going to be played before the other
songs.

In “random” mode, MPD maintains an
internal randomized sequence of songs. In this sequence,
songs with a higher priority come first, and all songs with
the same priority are shuffled (by default, all songs are
shuffled, because all have the same priority “0”). When you
increase the priority of a song, it is moved to the front of
the sequence according to its new priority, but always after
the current one. A song that has been played already (it’s
“before” the current song in that sequence) will only be
scheduled for repeated playback if its priority has become
bigger than the priority of the current song. Decreasing the
priority of a song will move it farther to the end of the
sequence. Changing the priority of the current song has no
effect on the sequence. During playback, a song’s priority is
reset to zero.

Command reference

Note

For manipulating playlists and playing, there are two sets of
commands. One set uses the song id of a song in the playlist,
while another set uses the playlist position of the song. The
commands using song ids should be used instead of the commands
that manipulate and control playback based on playlist
position. Using song ids is a safer method when multiple
clients are interacting with MPD.

Querying MPD’s status

	clearerror
	Clears the current error message in status (this is also
accomplished by any command that starts playback).

	currentsong
	Displays the song info of the current song (same song that
is identified in status). Information about the current song
is represented by key-value pairs, one on each line. The first
pair must be the file key-value pair.

	idle [SUBSYSTEMS...] 1
	Waits until there is a noteworthy change in one or more
of MPD’s subsystems. As soon
as there is one, it lists all changed systems in a line
in the format changed:
SUBSYSTEM, where SUBSYSTEM is one of the
following:

	database: the song database has been modified after update.

	update: a database update has started or finished. If the database was modified during the update, the database event is also emitted.

	stored_playlist: a stored playlist has been modified, renamed, created or deleted

	playlist: the queue (i.e. the current playlist) has been modified

	player: the player has been started, stopped or seeked or
tags of the currently playing song have changed (e.g. received
from stream)

	mixer: the volume has been changed

	output: an audio output has been added, removed or modified (e.g. renamed, enabled or disabled)

	options: options like repeat, random, crossfade, replay gain

	partition: a partition was added, removed or changed

	sticker: the sticker database has been modified.

	subscription: a client has subscribed or unsubscribed to a channel

	message: a message was received on a channel this client is subscribed to; this event is only emitted when the queue is empty

	neighbor: a neighbor was found or lost

	mount: the mount list has changed

Change events accumulate, even while the connection is not in
“idle” mode; no events get lost while the client is doing
something else with the connection. If an event had already
occurred since the last call, the new idle
command will return immediately.

While a client is waiting for idle
results, the server disables timeouts, allowing a client
to wait for events as long as mpd runs. The
idle command can be canceled by
sending the command noidle (no other
commands are allowed). MPD
will then leave idle mode and print
results immediately; might be empty at this time.
If the optional SUBSYSTEMS argument
is used, MPD will only send
notifications when something changed in one of the
specified subsytems.

	status
	Reports the current status of the player and the volume
level.

	partition: the name of the current partition (see
Partition commands)

	volume: 0-100 (deprecated: -1 if the volume cannot
be determined)

	repeat: 0 or 1

	random: 0 or 1

	single 2: 0, 1, or oneshot 6

	consume 2: 0, 1 or oneshot 13

	playlist: 31-bit unsigned integer, the playlist version number

	playlistlength: integer, the length of the playlist

	state: play, stop, or pause

	song: playlist song number of the current song stopped on or playing

	songid: playlist songid of the current song stopped on or playing

	nextsong 2: playlist song number of the next song to be played

	nextsongid 2: playlist songid of the next song to be played

	time: total time elapsed (of current playing/paused song) in seconds
(deprecated, use elapsed instead)

	elapsed 3: Total time elapsed within the
current song in seconds, but with higher resolution.

	duration 5: Duration of the current song in seconds.

	bitrate: instantaneous bitrate in kbps

	xfade: crossfade in seconds (see Cross-Fading)

	mixrampdb: mixramp threshold in dB

	mixrampdelay: mixrampdelay in seconds

	audio: The format emitted by the decoder plugin during
playback, format: samplerate:bits:channels. See
Global Audio Format for a detailed explanation.

	updating_db: job id

	error: if there is an error, returns message here

MPD may omit lines which have no (known) value. Older
MPD versions used to have a “magic” value for
“unknown”, e.g. “volume: -1”.

	stats
	Displays statistics.

	artists: number of artists

	albums: number of albums

	songs: number of songs

	uptime: daemon uptime in seconds

	db_playtime: sum of all song times in the database in seconds

	db_update: last db update in UNIX time (seconds since
1970-01-01 UTC)

	playtime: time length of music played

Playback options

	consume {STATE} 2
	Sets consume state to STATE,
STATE should be 0, 1 or oneshot 13.
When consume is activated, each song played is removed from playlist.

	crossfade {SECONDS}
	Sets crossfading between songs. See Cross-Fading.

	mixrampdb {deciBels}
	Sets the threshold at which songs will be overlapped.
See MixRamp.

	mixrampdelay {SECONDS}
	Additional time subtracted from the overlap calculated by mixrampdb. A value of “nan” disables MixRamp overlapping and falls back to crossfading.
See MixRamp.

	random {STATE}
	Sets random state to STATE,
STATE should be 0 or 1.

	repeat {STATE}
	Sets repeat state to STATE,
STATE should be 0 or 1.

If enabled, MPD keeps repeating the whole queue (single mode disabled) or the current song (single mode enabled).

If random mode is also enabled, the
playback order will be shuffled each time the queue gets repeated.

	setvol {VOL}
	Sets volume to VOL, the range of
volume is 0-100.

getvol 8

Read the volume. The result is a volume: line like in
status. If there is no mixer, MPD will
emit an empty response. Example:

getvol
volume: 42
OK

	single {STATE} 2
	Sets single state to STATE,
STATE should be 0, 1 or oneshot 6.
When single is activated, playback is stopped after current song, or
song is repeated if the ‘repeat’ mode is enabled.

	replay_gain_mode {MODE} 3
	Sets the replay gain mode. One of
off,
track,
album,
auto
.
Changing the mode during playback may take several
seconds, because the new settings do not affect the
buffered data.
This command triggers the
options idle event.

	replay_gain_status
	Prints replay gain options. Currently, only the
variable replay_gain_mode is
returned.

	volume {CHANGE}
	Changes volume by amount CHANGE.
Deprecated, use setvol instead.

Controlling playback

	next
	Plays next song in the playlist.

	pause {STATE}
	Pause or resume playback. Pass 1 to pause playback or
0 to resume playback. Without the parameter, the pause
state is toggled.

	play [SONGPOS]
	Begins playing the playlist at song number
SONGPOS.

	playid [SONGID]
	Begins playing the playlist at song
SONGID.

	previous
	Plays previous song in the playlist.

	seek {SONGPOS} {TIME}
	Seeks to the position TIME (in
seconds; fractions allowed) of entry
SONGPOS in the playlist.

	seekid {SONGID} {TIME}
	Seeks to the position TIME (in
seconds; fractions allowed) of song
SONGID.

	seekcur {TIME}
	Seeks to the position TIME (in
seconds; fractions allowed) within the current song. If
prefixed by + or -, then the time is relative to the
current playing position.

	stop
	Stops playing.

The Queue

Note

The “queue” used to be called “current playlist” or just
“playlist”, but that was deemed confusing, because
“playlists” are also files containing a sequence of songs.
Those “playlist files” or “stored playlists” can be
loaded into the queue and the queue
can be saved into a playlist file, but
they are not to be confused with the queue.

Many of the command names in this section reflect the old
naming convention, but for the sake of compatibility, we
cannot rename commands.

There are two ways to address songs within the queue: by their
position and by their id.

The position is a 0-based index. It is unstable by design: if you
move, delete or insert songs, all following indices will change, and a
client can never be sure what song is behind a given index/position.

Song ids on the other hand are stable: an id is assigned to a song
when it is added, and will stay the same, no matter how much it is
moved around. Adding the same song twice will assign different ids to
them, and a deleted-and-readded song will have a new id. This way, a
client can always be sure the correct song is being used.

Many commands come in two flavors, one for each address type.
Whenever possible, ids should be used.

	add {URI} [POSITION]
	Adds the file URI to the playlist
(directories add recursively). URI
can also be a single file.

The position parameter is the same as in addid. 10

Clients that are connected via local socket may add arbitrary
local files (URI is an absolute path). Example:

add "/home/foo/Music/bar.ogg"

	addid {URI} [POSITION]
	Adds a song to the playlist (non-recursive) and returns the
song id. URI is always a single file or URL. For example:

addid "foo.mp3"
Id: 999
OK

If the second parameter is given, then the song is inserted at the
specified position. If the parameter starts with + or -,
then it is relative to the current song 8; e.g. +0
inserts right after the current song and -0 inserts right
before the current song (i.e. zero songs between the current song
and the newly added song).

	clear
	Clears the queue.

	delete [{POS} | {START:END}]
	Deletes a song from the playlist.

	deleteid {SONGID}
	Deletes the song SONGID from the
playlist

	move [{FROM} | {START:END}] {TO}
	Moves the song at FROM or range of songs
at START:END 2 to TO
in the playlist.

If TO starts with + or -, then it is relative to the
current song; e.g. +0 moves to right after the current song
and -0 moves to right before the current song (i.e. zero songs
between the current song and the moved range).

	moveid {FROM} {TO}
	Moves the song with FROM (songid) to
TO (playlist index) in the
playlist.

If TO starts with + or -, then it is relative to the
current song; e.g. +0 moves to right after the current song
and -0 moves to right before the current song (i.e. zero songs
between the current song and the moved song).

playlist

Displays the queue.

Do not use this, instead use playlistinfo.

	playlistfind {FILTER} [sort {TYPE}] [window {START:END}]
	Search the queue for songs matching
FILTER (see Filters).

sort sorts the result by the specified tag. The sort is
descending if the tag is prefixed with a minus (‘-‘). Only the
first tag value will be used, if multiple of the same type exist.
To sort by “Title”, “Artist”, “Album”, “AlbumArtist” or “Composer”,
you should specify “TitleSort”, “ArtistSort”, “AlbumSort”,
“AlbumArtistSort” or “ComposerSort” instead. These
will automatically fall back to the former if “*Sort” doesn’t
exist. “AlbumArtist” falls back to just “Artist”. The type
“Last-Modified” can sort by file modification time, and “prio”
sorts by queue priority.

window can be used to query only a portion of the real
response. The parameter is two zero-based queue positions; a
start index (including) and an end index (excluding). The end
index can be omitted, which means the range is open-ended.

	playlistid {SONGID}
	Displays a list of songs in the playlist.
SONGID is optional and specifies a
single song to display info for.

	playlistinfo [[SONGPOS] | [START:END]]
	Displays a list of all songs in the playlist, or if the optional
argument is given, displays information only for the song
SONGPOS or the range of songs
START:END 2

	playlistsearch {FILTER} [sort {TYPE}] [window {START:END}]
	Search the queue for songs matching
FILTER (see Filters).
Parameters have the same meaning as for find, except that search is not case sensitive.

	plchanges {VERSION} [START:END]
	Displays changed songs currently in the playlist since
VERSION. Start and end positions may
be given to limit the output to changes in the given
range.

To detect songs that were deleted at the end of the
playlist, use playlistlength returned by status command.

	plchangesposid {VERSION} [START:END]
	Displays changed songs currently in the playlist since
VERSION. This function only
returns the position and the id of the changed song, not
the complete metadata. This is more bandwidth efficient.

To detect songs that were deleted at the end of the
playlist, use playlistlength returned by status command.

	prio {PRIORITY} {START:END...}
	Set the priority of the specified songs. A higher
priority means that it will be played first when
“random” mode is enabled.

A priority is an integer between 0 and 255. The default
priority of new songs is 0.

	prioid {PRIORITY} {ID...}
	Same as priod,
but address the songs with their id.

	rangeid {ID} {START:END} 4
	Since MPD
0.19 Specifies the portion of the
song that shall be played. START and
END are offsets in seconds
(fractional seconds allowed); both are optional.
Omitting both (i.e. sending just “:”) means “remove the
range, play everything”. A song that is currently
playing cannot be manipulated this way.

	shuffle [START:END]
	Shuffles the queue.
START:END is optional and specifies
a range of songs.

	swap {SONG1} {SONG2}
	Swaps the positions of SONG1 and
SONG2.

	swapid {SONG1} {SONG2}
	Swaps the positions of SONG1 and
SONG2 (both song ids).

	addtagid {SONGID} {TAG} {VALUE}
	Adds a tag to the specified song. Editing song tags is
only possible for remote songs. This change is
volatile: it may be overwritten by tags received from
the server, and the data is gone when the song gets
removed from the queue.

	cleartagid {SONGID} [TAG]
	Removes tags from the specified song. If
TAG is not specified, then all tag
values will be removed. Editing song tags is only
possible for remote songs.

Stored playlists

Playlists are stored inside the configured playlist directory.
They are addressed with their file name (without the directory
and without the .m3u suffix).

Some of the commands described in this section can be used to
run playlist plugins instead of the hard-coded simple
m3u parser. They can access playlists in
the music directory (relative path including the suffix),
playlists in arbitrary location (absolute path including the suffix;
allowed only for clients that are connected via local socket), or
remote playlists (absolute URI with a supported scheme).

	listplaylist {NAME}
	Lists the songs in the playlist. Playlist plugins are
supported.

	listplaylistinfo {NAME}
	Lists the songs with metadata in the playlist. Playlist
plugins are supported.

	listplaylists
	Prints a list of the playlist directory.
After each playlist name the server sends its last
modification time as attribute “Last-Modified” in ISO
8601 format. To avoid problems due to clock differences
between clients and the server, clients should not
compare this value with their local clock.

	load {NAME} [START:END] [POSITION]
	Loads the playlist into the current queue. Playlist
plugins are supported. A range may be specified to load
only a part of the playlist.

The POSITION parameter specifies where the songs will be
inserted into the queue; it can be relative as described in
addid. (This requires specifying the range
as well; the special value 0: can be used if the whole playlist
shall be loaded at a certain queue position.) 9

	playlistadd {NAME} {URI} [POSITION]
	Adds URI to the playlist
NAME.m3u.
NAME.m3u will be created if it does
not exist.

The POSITION parameter specifies where the songs will be
inserted into the playlist. 10

	playlistclear {NAME}
	Clears the playlist NAME.m3u.

	playlistdelete {NAME} {SONGPOS}
	Deletes SONGPOS from the
playlist NAME.m3u.

The second parameter can be a range. 10

	playlistmove {NAME} {FROM} {TO}
	Moves the song at position FROM in
the playlist NAME.m3u to the
position TO.

	rename {NAME} {NEW_NAME}
	Renames the playlist NAME.m3u to NEW_NAME.m3u.

	rm {NAME}
	Removes the playlist NAME.m3u from
the playlist directory.

	save {NAME} [MODE]
	Saves the queue to
NAME.m3u in the playlist directory.

	MODE 13
	Optional argument. One of create, append, or replace.

	create
	The default. Create a new playlist.
Fail if a playlist with name NAME already exists.

	append, replace
	Append or replace an existing playlist.
Fail if a playlist with name NAME doesn't already exist.

The music database

	albumart {URI} {OFFSET}
	Locate album art for the given song and return a chunk of an album
art image file at offset OFFSET.

This is currently implemented by searching the directory the file
resides in for a file called cover.png, cover.jpg,
cover.tiff or cover.bmp.

Returns the file size and actual number
of bytes read at the requested offset, followed
by the chunk requested as raw bytes (see Binary Responses), then a
newline and the completion code.

Example:

albumart foo/bar.ogg 0
size: 1024768
binary: 8192
<8192 bytes>
OK

	count {FILTER} [group {GROUPTYPE}]
	Count the number of songs and their total playtime in
the database matching FILTER (see
Filters). The
following prints the number of songs whose title matches
“Echoes”:

count title Echoes

The group keyword may be used to
group the results by a tag. The first following example
prints per-artist counts while the next prints the
number of songs whose title matches “Echoes” grouped by
artist:

count group artist
count title Echoes group artist

A group with an empty value contains counts of matching songs which
don’t have this group tag. It exists only if at least one such song is
found.

getfingerprint {URI}

Calculate the song’s audio fingerprint. Example (abbreviated fingerprint):

getfingerprint "foo/bar.ogg"
chromaprint: AQACcEmSREmWJJmkIT_6CCf64...
OK

This command is only available if MPD was built with
libchromaprint (-Dchromaprint=enabled).

	find {FILTER} [sort {TYPE}] [window {START:END}]
	Search the database for songs matching
FILTER (see Filters).

sort sorts the result by the
specified tag. The sort is descending if the tag is
prefixed with a minus (‘-‘).
Without sort, the
order is undefined. Only the first tag value will be
used, if multiple of the same type exist. To sort by
“Artist”, “Album” or “AlbumArtist”, you should specify
“ArtistSort”, “AlbumSort” or “AlbumArtistSort” instead.
These will automatically fall back to the former if
“*Sort” doesn’t exist. “AlbumArtist” falls back to just
“Artist”. The type “Last-Modified” can sort by file
modification time.

window can be used to query only a
portion of the real response. The parameter is two
zero-based record numbers; a start number and an end
number.

	findadd {FILTER} [sort {TYPE}] [window {START:END}] [position POS]
	Search the database for songs matching
FILTER (see Filters) and add them to
the queue. Parameters have the same meaning as for
find and searchadd.

	list {TYPE} {FILTER} [group {GROUPTYPE}]
	Lists unique tags values of the specified type.
TYPE can be any tag supported by
MPD.

Additional arguments may specify a filter.
The group keyword may be used
(repeatedly) to group the results by one or more tags.

The following example lists all album names,
grouped by their respective (album) artist:

list album group albumartist

list file was implemented in an early MPD version,
but does not appear to make a lot of sense. It still works (to
avoid breaking compatibility), but is deprecated.

	listall [URI]
	Lists all songs and directories in
URI.

Do not use this command. Do not manage a client-side
copy of MPD’s database. That
is fragile and adds huge overhead. It will break with
large databases. Instead, query
MPD whenever you need
something.

	listallinfo [URI]
	Same as listall,
except it also returns metadata info in the same format
as lsinfo

Do not use this command. Do not manage a client-side
copy of MPD’s database. That
is fragile and adds huge overhead. It will break with
large databases. Instead, query
MPD whenever you need
something.

	listfiles {URI}
	Lists the contents of the directory
URI, including files are not
recognized by MPD.
URI can be a path relative to the
music directory or an URI understood by one of the
storage plugins. The response contains at least one
line for each directory entry with the prefix “file: ”
or “directory: “, and may be followed by file attributes
such as “Last-Modified” and “size”.

For example, “smb://SERVER” returns a list of all shares
on the given SMB/CIFS server; “nfs://servername/path”
obtains a directory listing from the NFS server.

	lsinfo [URI]
	Lists the contents of the directory
URI. The response contains records
starting with file,
directory or
playlist, each followed by metadata
(tags or other metadata).

When listing the root directory, this currently returns
the list of stored playlists. This behavior is
deprecated; use “listplaylists” instead.

This command may be used to list metadata of remote
files (e.g. URI beginning with “http://” or “smb://”).

Clients that are connected via local socket may
use this command to read the tags of an arbitrary local
file (URI is an absolute path).

	readcomments {URI}
	Read “comments” (i.e. key-value pairs) from the file
specified by “URI”. This “URI” can be a path relative
to the music directory or an absolute path.

This command may be used to list metadata of remote
files (e.g. URI beginning with “http://” or “smb://”).

The response consists of lines in the form “KEY: VALUE”.
Comments with suspicious characters (e.g. newlines) are
ignored silently.

The meaning of these depends on the codec, and not all
decoder plugins support it. For example, on Ogg files,
this lists the Vorbis comments.

	readpicture {URI} {OFFSET}
	Locate a picture for the given song and return a chunk of the
image file at offset OFFSET. This is usually implemented by
reading embedded pictures from binary tags (e.g. ID3v2’s APIC
tag).

Returns the following values:

	size: the total file size

	type: the file’s MIME type (optional)

	binary: see Binary Responses

If the song file was recognized, but there is no picture, the
response is successful, but is otherwise empty.

Example:

readpicture foo/bar.ogg 0
size: 1024768
type: image/jpeg
binary: 8192
<8192 bytes>
OK

	search {FILTER} [sort {TYPE}] [window {START:END}]
	Search the database for songs matching
FILTER (see Filters). Parameters
have the same meaning as for find,
except that search is not case sensitive.

	searchadd {FILTER} [sort {TYPE}] [window {START:END}] [position POS]
	Search the database for songs matching
FILTER (see Filters) and add them to
the queue.

Parameters have the same meaning as for search.

The position parameter specifies where the songs will be
inserted. 8
It can be relative to the current song as in addid. 12

	searchaddpl {NAME} {FILTER} [sort {TYPE}] [window {START:END}] [position POS]
	Search the database for songs matching
FILTER (see Filters) and add them to
the playlist named NAME.

If a playlist by that name doesn’t exist it is created.

Parameters have the same meaning as for search.

The position parameter specifies where the songs will be
inserted. 11

	searchcount {FILTER} [group {GROUPTYPE}]
	Count the number of songs and their total playtime in
the database matching FILTER (see
Filters).

Parameters have the same meaning as for count
except the search is not case sensitive.

	update [URI]
	Updates the music database: find new files, remove
deleted files, update modified files.

URI is a particular directory or
song/file to update. If you do not specify it,
everything is updated.

Prints updating_db: JOBID where
JOBID is a positive number
identifying the update job. You can read the current
job id in the status
response.

	rescan [URI]
	Same as update,
but also rescans unmodified files.

Mounts and neighbors

A “storage” provides access to files in a directory tree. The
most basic storage plugin is the “local” storage plugin which
accesses the local file system, and there are plugins to
access NFS and SMB servers.

Multiple storages can be “mounted” together, similar to the
mount command on many operating
systems, but without cooperation from the kernel. No
superuser privileges are necessary, because this mapping exists
only inside the MPD process.

	mount {PATH} {URI}
	Mount the specified remote storage URI at the given
path. Example:

mount foo nfs://192.168.1.4/export/mp3

	unmount {PATH}
	Unmounts the specified path. Example:

unmount foo

	listmounts
	Queries a list of all mounts. By default, this contains
just the configured music_directory.
Example:

listmounts
mount:
storage: /home/foo/music
mount: foo
storage: nfs://192.168.1.4/export/mp3
OK

	listneighbors
	Queries a list of “neighbors” (e.g. accessible file
servers on the local net). Items on that list may be
used with the mount
command. Example:

listneighbors
neighbor: smb://FOO
name: FOO (Samba 4.1.11-Debian)
OK

Stickers

“Stickers” 2 are pieces of
information attached to existing
MPD objects (e.g. song files,
directories, albums; but currently, they are only implemented for
song). Clients can create arbitrary name/value
pairs. MPD itself does not assume
any special meaning in them.

The goal is to allow clients to share additional (possibly
dynamic) information about songs, which is neither stored on
the client (not available to other clients), nor stored in the
song files (MPD has no write
access).

Client developers should create a standard for common sticker
names, to ensure interoperability.

Objects which may have stickers are addressed by their object
type (“song” for song objects) and their URI (the path within
the database for songs).

	sticker get {TYPE} {URI} {NAME}
	Reads a sticker value for the specified object.

	sticker set {TYPE} {URI} {NAME} {VALUE}
	Adds a sticker value to the specified object. If a
sticker item with that name already exists, it is
replaced.

	sticker delete {TYPE} {URI} [NAME]
	Deletes a sticker value from the specified object. If
you do not specify a sticker name, all sticker values
are deleted.

	sticker list {TYPE} {URI}
	Lists the stickers for the specified object.

	sticker find {TYPE} {URI} {NAME}
	Searches the sticker database for stickers with the
specified name, below the specified directory (URI).
For each matching song, it prints the URI and that one
sticker’s value.

	sticker find {TYPE} {URI} {NAME} = {VALUE}
	Searches for stickers with the given value.

Other supported operators are:
“<”, “>”

Connection settings

	close
	Closes the connection to MPD.
MPD will try to send the
remaining output buffer before it actually closes the
connection, but that cannot be guaranteed. This command
will not generate a response.

Clients should not use this command; instead, they should just
close the socket.

	kill
	Kills MPD.

Do not use this command. Send SIGTERM to MPD
instead, or better: let your service manager handle MPD
shutdown (e.g. systemctl stop mpd).

	password {PASSWORD}
	This is used for authentication with the server.
PASSWORD is simply the plaintext
password.

	ping
	Does nothing but return “OK”.

binarylimit SIZE 7

Set the maximum binary response size for the
current connection to the specified number of bytes.

A bigger value means less overhead for transmitting large
entities, but it also means that the connection is blocked for a
longer time.

	tagtypes
	Shows a list of available tag types. It is an
intersection of the metadata_to_use
setting and this client’s tag mask.

About the tag mask: each client can decide to disable
any number of tag types, which will be omitted from
responses to this client. That is a good idea, because
it makes responses smaller. The following
tagtypes sub commands configure this
list.

	tagtypes disable {NAME...}
	Remove one or more tags from the list of tag types the
client is interested in. These will be omitted from
responses to this client.

	tagtypes enable {NAME...}
	Re-enable one or more tags from the list of tag types
for this client. These will no longer be hidden from
responses to this client.

	tagtypes clear
	Clear the list of tag types this client is interested
in. This means that MPD will
not send any tags to this client.

	tagtypes all
	Announce that this client is interested in all tag
types. This is the default setting for new clients.

Partition commands

These commands allow a client to inspect and manage
“partitions”. A partition is one frontend of a multi-player
MPD process: it has separate queue, player and outputs. A
client is assigned to one partition at a time.

	partition {NAME}
	Switch the client to a different partition.

	listpartitions
	Print a list of partitions. Each partition starts with
a partition keyword and the
partition’s name, followed by information about the
partition.

	newpartition {NAME}
	Create a new partition.

	delpartition {NAME}
	Delete a partition. The partition must be empty (no connected
clients and no outputs).

	moveoutput {OUTPUTNAME}
	Move an output to the current partition.

Audio output devices

	disableoutput {ID}
	Turns an output off.

	enableoutput {ID}
	Turns an output on.

	toggleoutput {ID}
	Turns an output on or off, depending on the current
state.

	outputs
	Shows information about all outputs.

outputid: 0
outputname: My ALSA Device
plugin: alsa
outputenabled: 0
attribute: dop=0
OK

Return information:

	outputid: ID of the output. May change between executions

	outputname: Name of the output. It can be any.

	outputenabled: Status of the output. 0 if disabled, 1 if enabled.

	outputset {ID} {NAME} {VALUE}
	Set a runtime attribute. These are specific to the
output plugin, and supported values are usually printed
in the outputs
response.

Reflection

	config
	Dumps configuration values that may be interesting for
the client. This command is only permitted to “local”
clients (connected via local socket).

The following response attributes are available:

	music_directory: The absolute path of the music directory.

	playlist_directory: The absolute path of the playlist directory.

	pcre: Indicates pcre support.

	commands
	Shows which commands the current user has access to.

	notcommands
	Shows which commands the current user does not have
access to.

	urlhandlers
	Gets a list of available URL handlers.

	decoders
	Print a list of decoder plugins, followed by their
supported suffixes and MIME types. Example response:

plugin: mad
suffix: mp3
suffix: mp2
mime_type: audio/mpeg
plugin: mpcdec
suffix: mpc

Client to client

Clients can communicate with each others over “channels”. A
channel is created by a client subscribing to it. More than
one client can be subscribed to a channel at a time; all of
them will receive the messages which get sent to it.

Each time a client subscribes or unsubscribes, the global idle
event subscription is generated. In
conjunction with the channels
command, this may be used to auto-detect clients providing
additional services.

New messages are indicated by the message
idle event.

If your MPD instance has multiple partitions, note that
client-to-client messages are local to the current partition.

	subscribe {NAME}
	Subscribe to a channel. The channel is created if it
does not exist already. The name may consist of
alphanumeric ASCII characters plus underscore, dash, dot
and colon.

	unsubscribe {NAME}
	Unsubscribe from a channel.

	channels
	Obtain a list of all channels. The response is a list
of “channel:” lines.

	readmessages
	Reads messages for this client. The response is a list
of “channel:” and “message:” lines.

	sendmessage {CHANNEL} {TEXT}
	Send a message to the specified channel.

Footnotes

	1

	Since MPD 0.14

	2(1,2,3,4,5,6,7,8,9)

	Since MPD 0.15

	3(1,2)

	Since MPD 0.16

	4

	Since MPD 0.19

	5

	Since MPD 0.20

	6(1,2)

	Since MPD 0.21

	7

	Since MPD 0.22.4

	8(1,2,3)

	Since MPD 0.23

	9

	Since MPD 0.23.1

	10(1,2,3)

	Since MPD 0.23.3

	11

	Since MPD 0.23.4

	12

	Since MPD 0.23.5

	13(1,2,3)

	Since MPD 0.24

mpd

SYNOPSIS

mpd [options] [CONF_FILE]

DESCRIPTION

MPD is a daemon for playing music. Music is played through the configured audio output(s) (which are generally local, but can be remote). The daemon stores info about all available music, and this info can be easily searched and retrieved. Player control, info retrieval, and playlist management can all be managed remotely.

MPD searches for a config file in $XDG_CONFIG_HOME/mpd/mpd.conf
then ~/.mpdconf then ~/.mpd/mpd.conf then /etc/mpd.conf or uses CONF_FILE.

Read more about MPD at http://www.musicpd.org/

OPTIONS

	
--help

	Output a brief help message.

	
--kill

	Kill the currently running mpd session. The pid_file parameter must be specified in the config file for this to work.

	
--no-config

	Don’t read from the configuration file.

	
--no-daemon

	Don’t detach from console.

	
--stderr

	Print messages to stderr.

	
--verbose

	Verbose logging.

	
--version

	Print version information.

FILES

	$XDG_CONFIG_HOME/mpd/mpd.conf
	User configuration file (usually ~/.config/mpd/mpd.conf).

	/etc/mpd.conf
	Global configuration file.

SEE ALSO

mpd.conf(5), mpc(1)

BUGS

If you find a bug, please report it at https://github.com/MusicPlayerDaemon/MPD/issues/

mpd.conf

DESCRIPTION

mpd.conf is the configuration file for mpd(1). If
not specified on the command line, MPD first searches for it at
$XDG_CONFIG_HOME/mpd/mpd.conf then at ~/.mpdconf then
at ~/.mpd/mpd.conf and then in /etc/mpd.conf.

Each line in the configuration file contains a setting name and its value, e.g.:

connection_timeout "5"

For settings which specify a filesystem path, the tilde is expanded:

music_directory "~/Music"

Some of the settings are grouped in blocks with curly braces, e.g. per-plugin settings:

audio_output {
 type "alsa"
 name "My ALSA output"
 device "iec958:CARD=Intel,DEV=0"
 mixer_control "PCM"
}

The include directive can be used to include settings from
another file; the given file name is relative to the current file:

include "other.conf"

You can use include_optional instead if you want the included file to be
optional; the directive will be ignored if the file does not exist:

include_optional "may_not_exist.conf"

See docs/mpdconf.example in the source tarball for an example
configuration file.

This manual is not complete, it lists only the most important options.
Please read the MPD user manual for a complete configuration guide:
http://www.musicpd.org/doc/user/

OPTIONAL PARAMETERS

	db_file <file>
	This specifies where the db file will be stored.

	log_file <file>
	This specifies where the log file should be located. The special value “syslog” makes MPD use the local syslog daemon.

	sticker_file <file>
	The location of the sticker database. This is a database which manages
dynamic information attached to songs.

	pid_file <file>
	This specifies the file to save mpd’s process ID in.

	music_directory <directory>
	This specifies the directory where music is located. If you do not configure
this, you can only play streams.

	playlist_directory <directory>
	This specifies the directory where saved playlists are stored. If
you do not configure this, you cannot save playlists.

	state_file <file>
	This specifies if a state file is used and where it is located. The state of
mpd will be saved to this file when mpd is terminated by a TERM signal or by
the kill command. When mpd is restarted, it will read the state file and
restore the state of mpd (including the playlist).

	restore_paused <yes or no>
	Put MPD into pause mode instead of starting playback after startup.

	user <username>
	This specifies the user that MPD will run as, if set. MPD should never run
as root, and you may use this option to make MPD change its user id after
initialization. Do not use this option if you start MPD as an unprivileged
user.

	port <port>
	This specifies the port that mpd listens on. The default is 6600.

	log_level <level>
	Suppress all messages below the given threshold. The following
log levels are available:

	error: errors

	warning: warnings

	notice: interesting informational messages

	info: unimportant informational messages

	verbose: debug messages (for developers and for
troubleshooting)

The default is notice.

	follow_outside_symlinks <yes or no>
	Control if MPD will follow symbolic links pointing outside the music dir. You
must recreate the database after changing this option. The default is “yes”.

	follow_inside_symlinks <yes or no>
	Control if MPD will follow symbolic links pointing inside the music dir,
potentially adding duplicates to the database. You must recreate the
database after changing this option. The default is “yes”.

	zeroconf_enabled <yes or no>
	If yes, and MPD has been compiled with support for Avahi or Bonjour, service
information will be published with Zeroconf. The default is yes.

	zeroconf_name <name>
	If Zeroconf is enabled, this is the service name to publish. This name should
be unique to your local network, but name collisions will be properly dealt
with. The default is “Music Player @ %h”, where %h will be replaced with the
hostname of the machine running MPD.

	audio_output
	See DESCRIPTION and the various AUDIO OUTPUT PARAMETERS sections for the
format of this parameter. Multiple audio_output sections may be specified. If
no audio_output section is specified, then MPD will scan for a usable audio
output.

	filesystem_charset <charset>
	This specifies the character set used for the filesystem. A list of supported
character sets can be obtained by running “iconv -l”. The default is
determined from the locale when the db was originally created.

	save_absolute_paths_in_playlists <yes or no>
	This specifies whether relative or absolute paths for song filenames are used
when saving playlists. The default is “no”.

	auto_update <yes or no>
	This specifies the whether to support automatic update of music database
when files are changed in music_directory. The default is to disable
autoupdate of database.

	auto_update_depth <N>
	Limit the depth of the directories being watched, 0 means only watch the
music directory itself. There is no limit by default.

REQUIRED AUDIO OUTPUT PARAMETERS

	type <type>
	This specifies the audio output type. See the list of supported outputs in
mpd --version for possible values.

	name <name>
	This specifies a unique name for the audio output.

OPTIONAL AUDIO OUTPUT PARAMETERS

	format <sample_rate:bits:channels>
	This specifies the sample rate, bits per sample, and number of channels of
audio that is sent to the audio output device. See documentation for the
audio_output_format parameter for more details. The default is to use
whatever audio format is passed to the audio output. Any of the three
attributes may be an asterisk to specify that this attribute should not be
enforced

	replay_gain_handler <software, mixer or none>
	Specifies how replay gain is applied. The default is “software”, which uses
an internal software volume control. “mixer” uses the configured (hardware)
mixer control. “none” disables replay gain on this audio output.

	mixer_type <hardware, software or none>
	Specifies which mixer should be used for this audio output: the hardware
mixer (available for ALSA, OSS and PulseAudio), the software mixer or no
mixer (“none”). By default, the hardware mixer is used for devices which
support it, and none for the others.

FILES

	$XDG_CONFIG_HOME/mpd/mpd.conf
	User configuration file (usually ~/.config/mpd/mpd.conf).

	/etc/mpd.conf
	Global configuration file.

SEE ALSO

mpd(1), mpc(1)

Index

 Symbols
 | E
 | M
 | N
 | R
 | S
 | X

Symbols

 	
 	
 --help

 	mpd command line option

 	
 --kill

 	mpd command line option

 	
 --no-config

 	mpd command line option

 	
 --no-daemon

 	mpd command line option

 	
 	
 --stderr

 	mpd command line option

 	
 --verbose

 	mpd command line option

 	
 --version

 	mpd command line option

E

 	
 	
 environment variable

 	MPD_HOST, [1], [2]

 	MPD_PORT, [1], [2]

 	MPD_TIMEOUT

 	NDK_PATH

 	RLIMIT_RTPRIO

 	RLIMIT_RTTIME

 	SDK_PATH

 	XDG_RUNTIME_DIR

M

 	
 	
 mpd command line option

 	--help

 	--kill

 	--no-config

 	--no-daemon

 	--stderr

 	--verbose

 	--version

 	
 	MPD_HOST, [1], [2]

 	MPD_PORT, [1], [2]

 	MPD_TIMEOUT

N

 	
 	NDK_PATH

R

 	
 	
 RFC

 	RFC 7845

 	
 	RLIMIT_RTPRIO

 	RLIMIT_RTTIME

S

 	
 	SDK_PATH

X

 	
 	XDG_RUNTIME_DIR

 nav.xhtml

 Table of Contents

 		
 Music Player Daemon

 		
 User’s Manual

 		
 Introduction

 		
 Installation

 		
 Installing on Debian/Ubuntu

 		
 Installing on Android

 		
 Compiling from source

 		
 Compiling for Windows

 		
 Compiling for Android

 		
 Configuration

 		
 The Configuration File

 		
 Configuring the music directory

 		
 Configuring database plugins

 		
 Configuring Partitions

 		
 Configuring neighbor plugins

 		
 Configuring input plugins

 		
 Configuring archive plugins

 		
 Configuring decoder plugins

 		
 Configuring encoder plugins

 		
 Configuring audio outputs

 		
 Configuring filters

 		
 Configuring playlist plugins

 		
 Audio Format Settings

 		
 Volume Normalization Settings

 		
 Cross-Fading

 		
 Client Connections

 		
 Other Settings

 		
 Advanced configuration

 		
 Satellite setup

 		
 Real-Time Scheduling

 		
 Using MPD

 		
 Starting and Stopping MPD

 		
 Signals

 		
 The client

 		
 The music directory and the database

 		
 Metadata

 		
 The queue

 		
 Stored Playlists

 		
 Advanced usage

 		
 Bit-perfect playback

 		
 Direct Stream Digital (DSD)

 		
 ICY-MetaData

 		
 Client Hacks

 		
 External Mixer

 		
 Troubleshooting

 		
 Where to start

 		
 Support

 		
 Reporting Bugs

 		
 Plugin reference

 		
 Database plugins

 		
 simple

 		
 proxy

 		
 upnp

 		
 Storage plugins

 		
 local

 		
 curl

 		
 smbclient

 		
 nfs

 		
 udisks

 		
 Neighbor plugins

 		
 smbclient

 		
 udisks

 		
 upnp

 		
 Input plugins

 		
 alsa

 		
 cdio_paranoia

 		
 curl

 		
 ffmpeg

 		
 file

 		
 mms

 		
 nfs

 		
 smbclient

 		
 qobuz

 		
 Decoder plugins

 		
 adplug

 		
 audiofile

 		
 faad

 		
 ffmpeg

 		
 flac

 		
 dsdiff

 		
 dsf

 		
 fluidsynth

 		
 gme

 		
 mad

 		
 mikmod

 		
 modplug

 		
 openmpt

 		
 mpcdec

 		
 mpg123

 		
 opus

 		
 pcm

 		
 sidplay

 		
 sndfile

 		
 vorbis

 		
 wavpack

 		
 wildmidi

 		
 Encoder plugins

 		
 flac

 		
 lame

 		
 null

 		
 shine

 		
 twolame

 		
 opus

 		
 vorbis

 		
 wave

 		
 Resampler plugins

 		
 internal

 		
 libsamplerate

 		
 soxr

 		
 Output plugins

 		
 alsa

 		
 ao

 		
 sndio

 		
 fifo

 		
 jack

 		
 httpd

 		
 null

 		
 oss

 		
 openal

 		
 osx

 		
 pipe

 		
 pipewire

 		
 pulse

 		
 recorder

 		
 shout

 		
 sles

 		
 snapcast

 		
 solaris

 		
 wasapi

 		
 Filter plugins

 		
 ffmpeg

 		
 hdcd

 		
 normalize

 		
 null

 		
 route

 		
 Playlist plugins

 		
 asx

 		
 cue

 		
 embcue

 		
 m3u

 		
 extm3u

 		
 flac

 		
 pls

 		
 rss

 		
 soundcloud

 		
 xspf

 		
 Archive plugins

 		
 bz2

 		
 zzip

 		
 iso

 		
 Developer’s Manual

 		
 Introduction

 		
 Code Style

 		
 Error handling

 		
 git Branches

 		
 Hacking The Source

 		
 Basic stgit usage

 		
 Submitting Patches

 		
 Client Developer’s Manual

 		
 Introduction

 		
 Client Libraries

 		
 Connecting to MPD

 		
 Environment Variables

 		
 Protocol

 		
 General protocol syntax

 		
 Protocol overview

 		
 Requests

 		
 Responses

 		
 Command lists

 		
 Ranges

 		
 Filters

 		
 Tags

 		
 Other Metadata

 		
 Recipes

 		
 Queuing

 		
 Command reference

 		
 Querying MPD’s status

 		
 Playback options

 		
 Controlling playback

 		
 The Queue

 		
 Stored playlists

 		
 The music database

 		
 Mounts and neighbors

 		
 Stickers

 		
 Connection settings

 		
 Partition commands

 		
 Audio output devices

 		
 Reflection

 		
 Client to client

 		
 mpd

 		
 SYNOPSIS

 		
 DESCRIPTION

 		
 OPTIONS

 		
 FILES

 		
 SEE ALSO

 		
 BUGS

 		
 mpd.conf

 		
 DESCRIPTION

 		
 OPTIONAL PARAMETERS

 		
 REQUIRED AUDIO OUTPUT PARAMETERS

 		
 OPTIONAL AUDIO OUTPUT PARAMETERS

 		
 FILES

 		
 SEE ALSO

_static/minus.png

_static/plus.png

_static/file.png

